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Abstract

Combined quantum mechanics/molecular mechanics (QM/MM) modelling has the potential to
answer fundamental questions about enzyme mechanisms and catalysis. Calculations using QM/MM
methods can now predict barriers for enzyme-catalysed reactions with unprecedented, near
chemical accuracy, i.e. to within | kcal/mol in the best cases. Quantitative predictions from first-
principles calculations were only previously possible for very small molecules. At this level,
quantitative, reliable predictions can be made about the mechanisms of enzyme-catalysed reactions.
This development signals a new era of computational biochemistry.

Background

Ever since the catalytic power of enzymes was first recog-
nised, chemists have wondered and argued about how
they work. Enzymes are outstandingly efficient natural
catalysts. Better understanding of the mechanisms by
which they achieve these catalytic properties promises
technological spin-offs such as routes to new drugs (many
drugs are enzyme inhibitors, which bind to enzymes and
prevent them from functioning), analysis of the effects of
genetic variation and mutation (for example in predicting
individual metabolism of pharmaceuticals); and the
design of new catalysts (for example biomimetic catalysts
or engineered enzymes). There is great interest in develop-
ing protein catalysts for practical applications, for instance
in the pharmaceutical, chemical and biotechnology
industries. Computational modelling has a vital role to
play in these developments: unstable species such as tran-
sition states and reaction intermediates are crucial to
questions of reactivity, but cannot be studied directly by
experiment in systems as complex as enzymes. The field of
enzyme reaction modelling has grown enormously in

recent years and has matured to the point that computa-
tional enzymology is increasingly recognised as essential
for understanding these fascinating biological catalysts [1-
4]. Recent calculations [5] bring a new level of accuracy to
bear on the problem, essential for quantitative conclu-
sions and comparisons with experiment.

Combined quantum mechanics/molecular mechanics
(QM/MM) methods allow enzyme reactions to be mod-
elled: a small region at the active site (where the reaction
happens) is treated by a quantum mechanical electronic
structure method; this region interacts with the protein
and solvent environment, which are included more sim-
ply (though in atomic detail) by an empirical 'molecular
mechanics' force field [1,2,4,6]. This approach combines
the simplicity and speed of the MM treatment of the pro-
tein structure with the flexibility and power of a quantum
chemical treatment (which allows modelling of bond
breaking and making, and electronic polarization). Until
recently, QM/MM investigations of enzymes have gener-
ally been limited to relatively low levels of QM theory,
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such as semi-empirical methods or density functional the-
ory (DFT). Semi-empirical methods are computationally
cheap, fast enough for QM/MM molecular dynamics sim-
ulations, but error-prone, and give reaction energies and
barriers that can be in error by 10 kcal/mol or more. DFT
(especially with the B3LYP hybrid functional) offers
improved accuracy, and has opened new classes of
enzymes (particularly metalloenzymes) to computational
investigation [7], such as studies of cytochrome P450
enzymes that metabolize drugs in the body [8,9]. These
DFT methods, however, lack key physical interactions,
such as dispersion, which are important in the binding of
ligands to proteins. DFT often gives barrier heights that are
too low by several kcal/mol, and it does not offer a route
to their systematic improvement or testing, making it dif-
ficult to assess the accuracy of results. Other modelling
methods such as the empirical valence bond technique
can give excellent results for enzyme activation energies
[3,10], and have provided important insights into the
basic causes of catalysis. Such empirical approaches, how-
ever, require extensive fitting to experimental data, and do
not consider the electronic structure explicitly.

Enzymology has been marked by vigorous debates and
controversial proposals about enzyme mechanisms, and
about the physical origins of enzyme catalysis. [dentifying
the chemical mechanisms of enzymes has proved diffi-
cult: it is often hard to differentiate between alternative
proposals, and many 'textbook' mechanisms are probably
incorrect in important details. Recent controversies over
enzyme catalysis include proposals of 'low-barrier' hydro-
gen bonds [11-14], 'near-attack conformations' [4,15,16],
the role of enzyme dynamics in catalysis [2,3], quantum
tunnelling [17] and entropic effects [3]. The applicability
of transition state theory to enzyme reactions has been
questioned. These arguments have often proved extremely
difficult to resolve, because the complexity and large size
of enzymes makes experimental analysis very difficult.
Atomistic simulations have a potentially vital role to play
in these debates, in the interpretation of experimental
data, and in providing a molecular level picture of reac-
tions in enzymes. Calculations have the potential to iden-
tify probable mechanisms, and to analyse key interactions
and catalytic effects. For quantitative comparisons with
experiments, and reliable predictions, high-level elec-
tronic structure methods are needed. Recent work by
Claeyssens et al. has shown that it is now possible to
achieve an unprecedented level of accuracy for enzyme-
catalysed reactions in QM/MM calculations [5]. Calcu-
lated activation energies for two enzyme reactions agree
very well with experiment; indeed the agreement is so
good that, given the known properties of the high-level
methods now available, it is clear that near chemical accu-
racy (1 kcal/mol) can be achieved in calculations on
enzyme-catalysed reactions. Such quantitative predictions
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in first principles calculations were only previously possi-
ble for very small molecules. These findings herald a new
era of computational biochemistry.

Discussion

The calculations focused on two enzymes that have
become paradigms for computational investigations:
chorismate mutase (CM) and para-hydroxybenzoate
hydroxylase (PHBH). Both have been studied previously
with lower-level (semi-empirical and ab initio) QM/MM
methods [4,15,18-23], and a wealth of experimental data
is available for comparison. CM catalyses the Claisen rear-
rangement of chorismate to prephenate, a key step in the
biosynthesis of essential aromatic amino acids. The reac-
tion catalysed by PHBH, an electrophilic aromatic substi-
tution involving a hydroperoxyflavin cofactor, is
important in the microbial breakdown of aromatic pollut-
ants and lignin from wood. Earlier modelling had been
encouraging, for example in showing correlations
between experimental rates and calculated activation
energies for the key step in PHBH [24], in addition to
identifying groups involved in lowering the energy barrier
to reaction by transition state stabilization in both
enzymes [4,22,23]. The barriers calculated at these lower
levels of QM/MM treatment were, however, typically sig-
nificantly different from experiment by 50% or more.

Computational chemistry is notorious for its love of acro-
nyms, which can make judging the results of calculations
difficult for non-specialists. The 'gold standard' of quan-
tum chemistry is provided by first principles - 'ab initio' -
methods that include correlation between electrons. They
allow the calculation of rate constants for gas-phase reac-
tions involving very few atoms with an accuracy similar to
that obtained experimentally [25]. For example, the hier-
archy of ab initio electron correlation methods MP2
(Moller-Plesset second-order perturbation theory), CCSD
(coupled-cluster theory with single and double excita-
tions) and CCSD(T) (CCSD with a perturbative treatment
of triple excitations) provide a a route to converging relia-
bly to high accuracy. These methods have previously been
limited to small molecules because of their very large
computational expense, which increases enormously with
the size of the system studied. This large increase in com-
putational cost is mostly due to the fact that the molecular
orbitals are delocalized over the whole system. Physically,
dynamic correlation between electrons is a short-ranged
phenomenon in covalent molecules. The vital electron
correlation effects can therefore be treated accurately and
efficiently by localizing the molecular orbitals. Using a
range of approximations it is possible to achieve effective
linear scaling of the computational requirements of calcu-
lations with molecule size. With recent developments[26]
it is now possible to treat systems of the size of typical QM
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regions in QM/MM calculations on enzymes (for example
24 atoms in CM; 49 atoms in PHBH).

The model of PHBH, constructed by Thiel et al., contained
7004 protein atoms, and surrounding water, altogether
around 23,000 atoms. The model of CM, for the enzyme
from Bacillus subtilis, contained 4192 protein atoms and
947 water molecules, in an approximate sphere of radius
25A around the active site. To account for conformational
variability of the enzymes, structures were taken from MM
and QM/MM molecular dynamics simulations. (QM/MM
molecular dynamics simulations, with semi-empirical
QM methods, were also used to calculate activation free
energies). These structures were used for reaction model-
ling, in which the structure is minimized at a series of set
values of a reaction coordinate, defined in terms of break-
ing and forming bonds. Ten separate pathways were cal-
culated for PHBH, and 16 for CM, with the results
averaged over all paths. The paths were calculated at the
B3LYP/MM level, which gives good structures.

Energies along the reaction pathways were calculated at
the MP2, LMP2 and LCCSD(TO) levels (the L in the acro-
nyms indicates that local approximations were used, and
TO is an approximate triples correction [27]), including
the effects of the atomic point charges of the MM atoms in
the calculations. These included by far the largest coupled
cluster calculations ever performed (the calculations on
PHBH involved 284 electrons and 1294 basis functions).
Approximations included in the calculations were tested;
for example, calculations were repeated with a much
larger QM region for CM, showing a change in barrier of
only 0.7 kcal/mol. The convergence with respect to basis
set size was tested at the MP2 level, showing a change in
barrier of less than 0.5 kcal/mol when very large basis sets
were used. Similarly, tests showed the local approxima-
tions had an effect of less than 0.5 kcal/mol. Altogether,
the errors in the best (LCCSD(T0)) barriers can be esti-
mated to be less than 1 kcal/mol compared to extremely
high (CCSD(T)) levels of quantum chemical theory,
which are known, from calculations on small molecules,
to give accurate barriers (i.e. typically within 1 kcal/mol of
experiment. The accuracy obtained for energy barriers by
Claeyssens et al. is unprecedented for enzyme reactions,
and has been previously been difficult to attain even for
small molecules.

How, then, do the calculated barriers compare with exper-
imental findings for these enzymes? To make this compar-
ison, the calculated (potential energy) barriers should be
corrected for the quantum mechanical zero-point energy
and thermal energy of molecular vibration: zero-point
energy is calculated to reduce the barrier by 1.5 kcal/mol
in CM, and by 1.1 kcal/mol in PHBH. In contrast, the ther-
mal vibrational contribution is small (0.1-0.2 kcal/mol).

http://journal.chemistrycentral.com/content/1/1/19

With these corrections, the calculated barriers can be com-
pared directly to experimental activation enthalpies.
Experimental kinetic data for enzymes typically give
steady-state rates, and so in making a comparison it is
important to remember that a single chemical step may
not be rate limiting - many enzymes have rates (at least
partially) determined by conformational changes or prod-
uct dissociation, for example. For both CM and PHBH, it
has been suggested that other steps may be rate-limiting
under some conditions. The chemical steps in both cases
are thought to have barriers close to the apparent activa-
tion energy for the overall reaction.

The activation enthalpies calculated at the highest levels
of quantum chemical theory (LCCSD(TO)) are in excellent
agreement with experiment (within ~1 kcal/mol) for both
enzymes. The calculated value for CM (average 13.3 kcal/
mol, with a root mean square variation of 1.1 kcal/mol
across 16 pathways) can be compared with the experi-
mental value of 12.7 kcal/mol, while for PHBH the calcu-
lated and experimental activation enthalpies are 13.3 +
1.5 kcal/mol and 12.0 kcal/mol, respectively. Only the
LCCSD(TO) barriers are in close agreement with the exper-
imental results. The LMP2 and B3LYP methods give barri-
ers that are 3-5 kcal/mol too low. This shows that a high-
level electron correlation treatment such as LCCSD(TO) is
required for quantitative predictions of barrier heights
(and probably other properties) in enzymes. In the transi-
tion state, more electrons are close together, and so the
correlation energy is very different from that of the ground
state. Electron correlation is therefore very important in
determining the barrier.

The key quantity in determining reaction rates is the acti-
vation free energy (A*G), not the enthalpy. To calculate
free energy differences, the effects of protein motion
should be included, i.e. averages over ensembles of struc-
tures. Activation free energies can be calculated from
molecular simulations, such as molecular dynamics sim-
ulations. Such simulations are feasible for enzyme reac-
tions with more approximate QM/MM methods, e.g.
using semi-empirical QM techniques. In general, the best
approach will be to calculate the free energy profile at the
low level, and correct it based on the difference between
low- and high-level QM/MM potential energy profiles.
The difference between the average activation enthalpy
and the activation free energy gives an estimate of the
entropic contribution to the barrier. For both CM and
PHBH, the estimated entropic contributions (at a temper-
ature of 300 K) are small: 2.5 kcal/mol for CM (similar to
the experimental value of 2.7 kcal/mol) and 0.4 kcal/mol
for PHBH. Adding these entropic contributions to the cal-
culated enthalpies at the highest QM/MM level gives free
energy barriers very close to those obtained experiment:
for CM, the (LCCSD(TO0)) calculated A*G is 15.6 + 1.1
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kcal/mol (versus 15.4 kcal/mol from experiment); for
PHBH the calculated A*G is 13.7 + 1.5 kcal/mol, compa-
rable to experimental values of 14-15 kcal/mol.

The agreement between calculated and experimental
energy barriers is excellent for both enzymes. The compar-
ison is made based on transition state theory, and the
quality of the agreement indicates that transition state the-
ory describes these enzyme-catalysed reactions well.
Dynamical effects apparently play only a small role in
determining the rate. Classical TST is known to be insuffi-
cient in some cases, but corrections for dynamical recross-
ing and quantum mechanical tunnelling can be included
[2,17]. Despite some previous suggestions to the contrary,
it seems that transition state theory provides a good gen-
eral framework for understanding the rates of such
enzyme-catalysed reactions.

Many challenges remain. Among these is the need for
extensive conformational sampling to achieve conver-
gence in free energies. In general, the best approach will
be to calculate free energy profiles at a low level and cor-
rect them using high-level calculations. Determining reac-
tion pathways can be difficult. Improvements to simple
MM models (e.g. to include polarization and more
sophisticated descriptions of electrostatics) are also likely
to be necessary. The QM and MM methods should be con-
sistent and balanced. The treatment of the QM region is
only part of the challenge; it is important to have a good
structural model of the surrounding enzyme (usually
derived from X-ray crystallography), and to consider care-
fully, for example, the solvation of the protein and the
protonation states of ionizable groups in the protein. The
pK,s of basic and acidic amino acid sidechains can be sig-
nificantly altered in the enzyme environment. Using the
wrong protonation states could lead to the prediction of
an incorrect mechanism. It is worthwhile to test methods
of pK, prediction, particularly for active site residues. Pre-
dictions of amino acid pK,s in proteins can be made with
simple but effective empirical methods such as PROPKA
[28], or by finite-difference Poisson-Boltzmann calcula-
tions.

Given these many challenges, and the complexity of
enzymes, validation of modelling methods by compari-
son with experiment will be very important. Many
enzyme reactions involve several chemical and conforma-
tional changes [29,30], and the chemical step(s) may not
always be rate limiting. Often experimental rates only for
overall reaction under steady-state conditions are availa-
ble. Experimental k_, rate constants do provide an upper
limit on the barrier for any step in the mechanism, how-
ever. Even when the rate of a single step has been meas-
ured, this is likely to represent an average over many
enzyme molecules in solution, whereas a calculated bar-
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rier is generally for a single molecule. Comparisons
between experimental rates and calculated barriers should
therefore be done with care. Transient kinetics and single
molecule studies will be particularly useful for detailed
comparisons. Detailed comparison with experiment will
be a fascinating challenge, now that calculations based on
first principles allow quantitative predictions on enzyme
mechanisms to be made. These computational techniques
also promise to make a significant contribution to other
areas of biology and chemistry.

Conclusion

The results of Claeyssens et al. show that electronic struc-
ture calculations can now predict activation barriers for
enzyme-catalysed reactions with 'chemical accuracy’, i.e.
to within 1 kcal/mol in the best cases. At this level, quan-
titative, reliable predictions can be made about the mech-
anisms of enzyme-catalysed reactions. This development
signals a new era of computational biochemistry.
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