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Abstract
Background: The prediction of ligand binding or protein structure requires very accurate force
field potentials – even small errors in force field potentials can make a 'wrong' structure (from the
billions possible) more stable than the single, 'correct' one. However, despite huge efforts to
optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even
to keep a protein molecule in its native conformation in the course of molecular dynamics
simulations or to bring an approximate, homology-based model of protein structure closer to its
native conformation.

Results: A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions
with covalent bonding can, in extreme cases, increase (or decrease) the interaction energy by about
20–40% at certain angles between the direction of interaction and the covalent bond. It is also
shown that on average multi-body effects decrease the total Van der Waals energy in proportion
to the square root of the electronic component of dielectric permittivity corresponding to dipole-
dipole interactions at small distances, where Van der Waals interactions take place.

Conclusion: The study shows that currently-ignored multi-atom Van der Waals interactions can,
in certain instances, lead to significant energy effects, comparable to those caused by the
replacement of atoms (for instance, C by N) in conventional pairwise Van der Waals interactions.

Background
Van der Waals (VdW) forces, which are very important for
the structure and interactions of biological molecules, are
usually treated as a simple sum of pairwise inter-atomic
interactions even in dense systems like proteins [1-5].
However, multi-atom VdW interactions are usually
ignored. This seems to follow the Axilrod-Teller theory [6]
which predicts a drastic (stronger than for pairwise inter-
actions) decrease of three-atom interactions with distance;
and indeed, detailed computations of single-atom liquids
[7] and solids [8,9] show that MB (multi-body) effects

amount to only ~5% of the total energy. However, this
work shows that multi-atom VdW interactions can
become quite large in the presence of covalent bonds. This
finding, which equally concerns atomic interactions in
biological molecules and solvents, implies a necessity to
revise the all-atom force fields currently used.

Results and Discussion
Theory
Following earlier studies [6,7,10-12], each atom i(i = 1, 2,
..., n) is considered as a three-dimensional (3D) harmonic
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quantum oscillator, where an electron with mass mi oscil-
lates harmonically with a frequency ωi, if unaffected by
other atoms. Atom i is fixed in the 3D point ri; it has an
instantaneous dipole moment exi, where e is the elemen-
tary charge and xi the 3D vector of instantaneous displace-
ment (whose equilibrium value is zero). Thus, a classic
Hamiltonian for the system of coupled oscillators is

here θij/|rij|3 = (δ - 3nij � nij)/|rij|3 is the usual dipole-
dipole interaction tensor (where δ is the 3D unit matrix,
nij � nij the tensor product of vectors nij = rij/|rij|, and rij =
ri - rj; i ≠ j). As is usually done (see Refs. [6,10-12]), rela-
tively week quadruple-dipole and so on interactions of
oscillators are ignored in addition to possible inharmoni-
ousness of the oscillators.

Energy of multi-body VdW interactions

Using the substitution [12], a conventional

quantum mechanical Hamiltonian operator for coupled
oscillators is obtained from [1]:

here  is the reduced Planck constant. By the introduc-
tion of a 3n-dimensional vector Y = [y1, ..., yn] composed

of n 3D vectors yi, and a 3n × 3n matrix B = ||bij|| com-

posed of n × n 3D blocks

, we obtain a simple Hamiltonian

for oscillation in a 3n dimensional potential well deter-

mined by the 3n × 3n matrix B. The 3n eigenvalues (Ω1)2,

..., (Ω3n)2 of matrix B are squared frequencies of 3n inde-

pendent one-dimensional oscillations along its eigenvec-

tors. If dipole-dipole interactions are absent (i.e., all θij ≡

0, where 0 is the zero 3D matrix), Ω1 = Ω2 = Ω3 = ω1, ...,

Ω3n-2 = Ω3n-1 = Ω3n = Ωn. If dipole-dipole interactions are

small, Ω1 > 0, ..., Ω3n > 0 are eigenvalues of the positively

determined matrix B1/2 (while in the case of too large
dipole-dipole interactions the system becomes unstable,

and at least one Ω2 becomes negative). The frequencies Ω
> 0 of the stable system of oscillators determine the
ground state energy of this system [12]: the system's

energy is  in the presence of

dipole-dipole interactions, while the energy of the same

but non-interacting oscillators is . Thus,

the energy of VdW dispersion forces is

In general, one can compute all 3n eigenvalues (Ωi)2 of 3n
× 3n matrix B(and thus eigenvalues Ωi of B1/2 and their
sum Sp [B1/2]) in a time proportional to (3n)3. Computa-
tionally, this solves a problem of exact calculation of VdW
dispersion forces for any system of polarizable dipoles.

However, to get a physical understanding of the main
terms contributing to these forces, one has to consider the
main terms of Sp[B1/2].

Matrix B can be presented as

where matrix B0 corresponds to uncoupled oscillators and

ΔB to weak coupling of the oscillators. Now let us con-

sider an auxiliary matrix Bλ = B0 + λΔB (where λ is a small

multiplier), and present its square root, , as a series

, where  is a diagonal

matrix with 3D blocks ( )ij = ωiδ if i = j, and ( )ij

= 0 if i≠j, and matrices Z1, Z2,... have to be calculated.

Since
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This system can be solved recursively: equation MZ + ZM
= Y (where matrices consist of equal-size blocks (M)ij,

(Z)ij, (Y)ij, i, j = 1, ..., n) unambiguously determines Z for

any Y when M = ||ωiδijδ|| is a positively determined diag-

onal matrix:

, and from [ωi + ωj](Z)ij = (Y)ij = (Y)ij we have (Z)ij = (Y)ij/

(ωi + ωj).

Denoting 1/(ωi + ωj) as μij and

as hij, we have

Matrices Z1, Z2, Z3,... do not depend on λ. Series

 converges at λ = 1, if the terms bij

of the matrix ΔB (and consequently hij) are sufficiently

small. Thus, the energy of dispersion forces

can be presented as a sum of pairwise, triple, quadruple,

etc. interactions (the term  is equal to

0, since all diagonal blocks hii ≡ 0).

The term

is a sum of conventional London's energies ΔWik [10-13]
of pairwise interactions: since Sp[θik θki] = 6,

where

is a convenient dimensionless parameter for the interac-

tion of oscillators i and k, and αi = e2/(mi ) is the elec-

tronic polarizability of atom i.

The term

is the sum of the energies of triple interactions, ΔWikp,
which depends on the geometry of the triangles (Fig 1a)
formed by the atoms involved [6,8,11,13]. Because
Sp[θikθkpθpi] = 3+9cosφk·cosφp·cosφi,

Thus, a triple interaction can be both repulsive and attrac-
tive: attractive, when atoms i, k, p stay nearly along a line;
repulsive, when these atoms form an acute or right-angled
triangle [6].

The quadruple interactions (contributing to the energy

term Sp[Z4] can consist of not only four different

atoms, but also three or two. Four-, three- and two-atom
interactions contain terms like Sp[hikhkphpqhqi], Sp[hikhki-

hiphpi], Sp[hikhkihikhki], respectively (where different indi-

ces denote different particles). After simple but
voluminous calculations it can be shown that
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where

.

In two-atom quadruple terms Γikik, -Sp[θikθkiθikθki] = -18.
In three-atom quadruple terms like Γikip,

-Sp[θik θki θik θpi] = 9 - 9cos2φi (15)

is always negative (Fig. 1b), i.e., neighbor k of atom i
increases attraction of i to p, and neighbor p of i increases
attraction of i to k. In four-atom quadruple terms Γikpq, the
value of -Sp[θikθkpθkpθqi] varies from -18 to +9 depending
on the mutual arrangement all four atoms.

Microscopic dielectric permittivity in a system of 
oscillators
Consider the system of oscillators described above, where
dipole moments exa, exb of atoms a, b are now fixed. The
potential energy of this system is

Here gab = e2θab/|rab|3, X(ab) is a 3·(n-2)-dimensional vector

composed of n-2 3D vectors xi (i ≠ a, b), ,  are

3 × 3·(n-2) matrices composed of n-2 3D matrices gia or

gib, respectively (i ≠ a, b), and the 3·(n-2) × 3·(n-2) matrix

A(ab) = ||aij|| is composed of (n-2) × (n-2) 3D blocks aij [i ≠

a, b, j ≠ a, b, aij = mi δ if i = j, aij = gij if i ≠ j]. The system's

energy minimum is determined by equations

, so that

, and the

energy at minimum is

The terms in {} are not interesting to us at this stage, they
correspond to the interaction of separate fixed dipoles a
and b with a polarizable environment. The term
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Geometrical factors that determine (a) triple and (b) one out of three quadruple interactions of three atoms: i, k, pFigure 1
Geometrical factors that determine (a) triple and (b) one out of three quadruple interactions of three atoms: i, k, p. C is the 
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and b. Thus, the polarizable medium-modified energy of
electrostatic interaction of fixed dipoles a and b is

when the "medium" consists of oscillators described at a
microscopic level.

On the other hand, we have a classic "macroscopic" equa-
tion for the medium-modified energy of interaction of the
same two dipoles. The modification is described by per-
mittivity, ε:

The value  is a scalar in a uniform macroscopic

medium; but  is a 3 × 3

tensor that depends on the 3D positions of dipoles a and
b when in a non-uniform "microscopic" medium. This
can be seen from comparison of Equations [18] and [19],
which describe the same energy U(1)

a-medium-b = U(ε)
ab in

"micro-" and "macroscopic" terms. However, the effective
value of medium-induced modification of dipole-dipole
interaction strength can still be defined by the equation

Defined thus, the scalar εab coincides with the conven-
tional permittivity in a uniform macroscopic medium.
When the "medium" consists of oscillators described at a
microscopic level, εab corresponds to the dielectric permit-
tivity for the interaction of dipoles a and b via the polariz-
able environment.

From equations [18] – [20],

. To estimate this value with accuracy up to triple interac-
tions (i.e. up to the third powers of small g matrices), it
remains only to find the main (g-independent) term of

[A(ab)]-1, since products like  already contain

second powers of g. From expansion similar to that pre-
sented in equation [5], one obtains

If the sum is taken over the oscillating electrons only
(while the nuclei positions are fixed), εab is an electronic
component of dielectric permittivity.

Multi-atom VdW interactions are important in the 
presence of covalent bonds

Equations [10] – [14] show that energies of pairwise, tri-
ple and quadruple interactions are proportional to

~ ω·γikγki, ~ ω·γikγkpγpi and ~ ω·γikγkpγpqγqi, respec-

tively, where ω is an oscillator excitation energy. The γ
values are small for non-bonded contacts. Indeed,

 is normally close to

1/2, because ωi and ωk are of equal order of magnitude

[13], and the α values are about 1 Å3 for atoms typical in
proteins (0.40 Å3 for H atoms, 0.69 – 0.85 Å3 for O atoms,
0.90–0.97 Å3 for N atoms, 1.03 – 1.32 Å3 for C atoms

[13]). Thus, the dimension less value γ is about 0.02 for

the closest non-bonded contact of atoms (|r| ≈ 2.2–3.4 Å
for atoms H, O, N, C [13]).

The very small value of γ at "non-bonded" distances
means that triple, quadruple, etc., non-bonded atom-
atom contacts are very weak compared to those that are
pairwise.

However, the situation changes when the γ factor involves
two atoms connected by a covalent bond. The atom-atom
distance in this case is at least two times smaller than that
for the closest non-bonded contact. Thus, the γ factor for
covalently bonded atoms is about tenfold (see Eq. [11])
larger than the γ factor for the closest non-bonded contact
of atoms. In this case, the energy of high-order interac-
tions can approach that of a pairwise interaction.

Taking an average estimate of γ = 0.15 for bonded atoms
(that corresponds to a typical covalent bond length of 1.5
Å between chemically equal atoms with polarizability of
1 Å3), we see (Fig. 2) a significant change in the VdW inter-
action energy for the cost of triple and quadruple interac-
tions of three atoms (when a pair of these atoms is
covalently bonded) and, to a lesser extent, for the cost of
four-atom interactions (when two pairs of atoms are cov-
alently bonded). It is useful to mention here that one
study cited herein [14] has already discussed the general
idea that ''bond-bond'' interactions are more appropriate

Ua b-medium-
( ) -1x  x(1) = a ab a

ab ab
b
ab

bg −( )G A G( ) ( )[ ]

(18)

Uab a ab b
( )ε

ε
= x x

1⎡
⎣⎢

⎤
⎦⎥
g . (19)

1
ε

1 1

ε
⎡
⎣⎢

⎤
⎦⎥

= − −

ab
a
ab ab

b
ab

abδδ G A G( ) ( )[ ]( ) -1 g

1 1 1
2ε ε εab ab

ab
ba

ba ab ba= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥ [ ] Sp Spg g g g .

(20)

εab ab a
ab ab

b
ab

ba b
ab ab

a
− = −( ) −2  Sp ( ) -1 ( ) -1g gG A G G A G( ) ( ) ( ) ([ ] [ ] aab

ab ba
)( )⎡

⎣⎢
⎤
⎦⎥ [ ]  Sp g g

G Ga
ab

b
ab( ) ( )

1
1

2
1

2
2 2ε ω

α

ab p p

ab bp pa

ab bp a b

p ab

m

g g g

g g
≈ − ⋅ = −

≠
∑

Sp[ ]

Sp[ ]

|r |

|ra

3

, aap pb

ab bp pa

ab bp a b | |r |

Sp[ ]

Sp[ ]3 3
a

⋅
≠
∑

θθ θθ θθ

θθ θθ,

.

(21)

ω ω
ω ω

γ
ω ω

ω ω
α αi k

i k
ik

i k

i k

i k

ik+
=

+
⋅
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ 

r
in 

| |3
Page 5 of 9
(page number not for citation purposes)



Chemistry Central Journal 2007, 1:21 http://journal.chemistrycentral.com/content/1/1/21
for conformational analysis than ''atom-atom'' interac-
tions.

In the case of the collinear arrangement of atoms and
bonds the attraction can grow by 70% (compare values in
columns "configuration and its energy" and "pairwise" in
Fig. 2), while in the case of the orthogonal arrangement of
atoms and bonds, the attraction can decrease by 6%. The
decrease is less than the increase because, as mentioned
above, the quadruple interaction is mainly attractive. The
main part of this attraction is due to the three-atom quad-
ruple interaction. This can be divided in two parts: Equa-

tion [15] can be presented as Sp[θikθkiθipθpi] = 12 + (9cos2φi
- 3), where the first (larger) term is an orientation-inde-
pendent constant (actually, it simply increases the VdW
attraction of any atom involved in covalent bonding to all
other atoms, see Fig. 1b; in available force fields [1-5] this
term is implicitly taken into account by ascribing and fit-
ting different pairwise attraction forces to atoms in differ-
ent covalent states). The second, the orientation-
dependent part equals zero if averaged in 3D space over
all possible atom-to-bond orientations (see examples in
Fig. 2); this part is rather similar to that for the interaction

Energy of VdW interactions at various configurations of participating non-bonded and bonded atomsFigure 2
Energy of VdW interactions at various configurations of participating non-bonded and bonded atoms. The distance between 
the closest non-bonded atoms is 4 Å in all cases, and unity is used as the energy of pairwise interaction of atoms at 4Å distance. 
If the distance between the closest non-bonded atoms is |r| ≈ 4 Å, all energies presented in the Table change as (4Å/|r|)6, 
approximately, and their ratio does not change essentially. The value γ = 0.15 describes the coupling of oscillations in two 
atoms connected by a covalent bond of fixed length 1.5 Å (see text for further explanation).
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of a separate atom with a remote covalent bond (cf. Fig.1b
to Fig. 1a).

The orientation-dependent terms, which mainly arise
from triple interactions, can increase or decrease VdW
energy by ~±20–40% at extremes. This energy effect is sig-
nificant, being comparable to that caused by the replace-
ment of an N atom (αN ≈ 0.95 Å3) by a C (αC ≈ 1.2 Å3) or
O (αO ≈ 0.75 Å3) atom in a pairwise VdW interaction (see
equations [10,11] at ωN≈ωC≈ωO). Moreover, the orienta-
tion effect is much stronger than the effect of replacing the
pairwise energies of two C-N non-bonded contacts with
the sum of pairwise energies of C-C and N-N contacts
(αCαC + αNαN - 2αCαN ≈ 5% × αCαN). Note that the contact
replacements are the main VdW effects currently used to
distinguish ''correct'' protein folds from those that are
''wrong''.

Thus, we indeed see that any conformational analysis
should by no means ignore the cumulative effect of the
coupling of multi-atom VdW interactions with covalent
bonds. Figure 3 shows that the energy difference between
two structures of equal compactness may change twice
due to this effect.

It is necessary to note that at short distances, which are the
most important for VdW interactions, one can expect
effects of inharmonicity, higher multipole interactions,
etc. [11,12]. These effects are avoided in the "harmonic
oscillator" model used in this work. Nevertheless, they
exist in reality, and their existence makes the expressions
obtained for many-body interactions approximate to the
same extent as the conventional London's expression is
for pairwise interactions. In particular, the value of γ for
each covalent bond may be treated as a parameter, the
value of which should be obtained from a fit of the exper-
imental data in the same way as the London's pairwise
interaction energy [11,13,14]. The necessity of fitting the
experimental data is underlined by a relatively slow con-
vergence of both the orientation-dependent and orienta-
tion-independent series in Figure 2.

"VdW permittivity"
VdW forces and the electronic part of dielectric permittiv-
ity are evidently connected: both originate from dipole-
dipole interactions. The relationship between VdW forces
and the macroscopic dielectric permittivity of the medium
is well studied in the continuum approximation
[11,14,16]. However, this approach is useful and rela-

Energy difference between two competing structures of equal compactness strongly depends on the energy terms taken into accountFigure 3
Energy difference between two competing structures of equal compactness strongly depends on the energy terms taken into 
account. The light-gray atom has twice-smaller polarizability that which is dark-gray (shown in Fig. 2). All the other details are 
the same as in Fig. 2.
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tively simple when applied to large uniform bodies, like
drops or layers. This work concerns interactions of small
fragments composed of various atoms, and the frequency-
dependent dielectric permeability, taken as a macroscopic
characteristic, seems not to be an appropriate tool to
investigate this case. Here we will consider an electronic
part of the microscopic dielectric permittivity created by
and acting at interacting harmonic oscillators, with the
goal of demonstrating that multi-atom interaction creates
a kind of "VdW permittivity" for pairwise VdW forces in
addition to elucidating a connection between VdW forces
and the electronic part of microscopic dielectric permittiv-
ity.

The role of dielectric permittivity in VdW forces is ambig-
uous. On the one hand, the VdW interaction of two atoms
is proportional to the square of the electrostatic interac-
tion between their fluctuating electronic polarizations.
Thus, one might expect the pairwise VdW interaction to be
inversely proportional to the square of the electronic part
of the dielectric permittivity. On the other hand, the
medium's electrons (which create the electronic compo-
nent of dielectric permittivity) are involved in VdW inter-
actions of "their own" atoms, and it is not clear if they are
"free" enough to influence the VdW interactions of the
other atoms in such a strong manner.

Following equations [8] – [10], [12], [13], one can present
the total VdW energy ΔW as

and see that

 plays the role of "microscopic permittivity" for the pair-
wise VdW interactions of atoms i, k. This "permittivity"
depends on the distance between atoms i and k, and the
space distribution of the other atoms with oscillating elec-

trons around them. The value Φik looks similar to, but

does not coincide with the square of the electronic part of

dielectric permittivity  given by equation [21]. Thus

the naive idea that VdW interaction may be inversely pro-
portional to the square of the electronic part of the dielec-
tric permittivity turned out to be wrong. However, the

values Φik and εik are related if all atoms have equal elec-

tron oscillation frequencies ω. Since the value εik of the

electronic component of the dielectric permittivity is not
far from unity [13], we see in this case that

Thus, on average, MB effects decrease the pairwise VdW
energy roughly in proportion to the square root of the
electronic part of the microscopic dielectric permittivity
for the dipole-dipole interaction via a polarizable atomic
environment.

The main effect is caused by the electronic permittivity,
which is pertinent to small, atomic distances, where the
main VdW interaction takes place. One can expect that the
electronic component of the microscopic dielectric per-
mittivity for interacting dipoles at these distances is signif-
icantly smaller than the electronic dielectric permittivity at
macroscopic distances: the decrease in VdW energy caused
by three-atom interaction in liquid argon [7] is approxi-
mately five-fold less than that expected the from its mac-
roscopic permittivity.

Conclusion
Ligand binding and protein structure prediction require
especially accurate force field potentials, because one
"correct" structure struggles against billions of "wrong"
ones [17]. Despite huge efforts to optimize them, the force
fields currently used are still not able, in a vast majority of
cases, to bring an approximate, homology-based model of
protein structure (whose atoms usually deviate by only
1.5 – 3 Å from their native positions) closer to its native
conformation [18-22]. At present, even the most success-
ful methods (one or two of the five dozen methods used)
show some improvement of homology models by a force
field-based refinement in only a half of cases [21-23]. This
shows that a "significant difficulty still exists in both sam-
pling and force field accuracy" [23]. One of the force field
problems is that which concerns the "not well captured"
balance between intramolecular and solvent dispersion
(i.e., VdW) interactions [23]. On the other hand, a partial
success of modern molecular mechanics methods in the
prediction of detailed protein structure shows that (i)
modern, improved methods of sampling of protein chain
conformations seem to work (possibly, at the cost of aver-
aging that decreases the effect of energy errors [17]) in
some, but not all, cases (especially when a near-native
conformation basin is reached from homology mode-
ling), and (ii) current force field quality is sufficient in
some, but not all, cases, so that an increase in the accuracy
of the force field seems to be crucial for the final success
of protein structure prediction methods.

This study shows that currently-ignored multi-atom VdW
interactions can be important for the further development
of force fields. The coupling of covalent bonding with

Δ Δ

Δ

W W

W

ik ikp
pkiki

ik
p

i p p k

+ + =

−
+ +

⋅

<<<
∑∑∑∑∑

  

...

( )

( )( )
1

22ω
ω ω ω ω

αpp ik

ip pk

ik kp pi

ik kip i j

|r |

|r | |r |

Sp[ ]

Sp[ ]

3

3 3
⋅ +

⎧
⎨
⎪

⎩ ≠
∑

θθ θθ θθ
θθ θθ,

...
⎪⎪

⎫
⎬
⎪

⎭⎪<
∑∑

ki

,

(22)

Φ
ω

ω ω ω ω
α

ik
p

i p p k

p ik

ip pk

ik kp≈ −
+ +

⋅ ⋅1
22( )

( )( )

|r |

|r | |r |

Sp[3

3 3

θθ θθ θθppi

ik kip i j

]

Sp[ ]θθ θθ≠

−

∑ +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪,

...

1

εab
2

Φ εik ik≈ . (23)
Page 8 of 9
(page number not for citation purposes)



Chemistry Central Journal 2007, 1:21 http://journal.chemistrycentral.com/content/1/1/21
Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

multi-atom VdW interactions is not the only important
MB effect. Some of those, like MB electrostatic interac-
tions, are taken into account by the existing force fields
(see [24,25]). Here the effect is caused by the interaction
of the permanent charges or permanent molecular
multipoles with particles of polarizable media. The other
interactions, which include interaction of permanent
multipoles with induced ones [26], are not yet taken into
account by existing force fields.

The discovered specific coupling of covalent bonding with
multi-atom VdW interactions does not need permanent
charges or multipoles, and therefore involves the multi-
tude of covalent bonds in molecules. Multi-atom interac-
tion with any of the bonds can lead to a significant energy
effect, which is comparable to that caused by the replace-
ment of atoms in conventional pairwise VdW interac-
tions. As a result, the effect described can be rather
significant in choosing the molecular shape.

Abbreviations
3D – three-dimensional; VdW – Van der Waals; MB –
multi-body; CASP – Critical Assessment of Techniques for
Protein Structure Prediction meeting
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