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Abstract 

Background: Quantitative structure–activity relationship (QSAR) modeling is one of the most important computa-
tional tools employed in drug discovery and development. The external validation of QSAR models is the main point 
to check the reliability of developed models for the prediction activity of not yet synthesized compounds. It was 
performed by different criteria in the literature.

Methods: In this study, 44 reported QSAR models for biologically active compounds reported in scientific papers 
were collected. Various statistical parameters of external validation of a QSAR model were calculated, and the results 
were discussed.

Results: The findings revealed that employing the coefficient of determination  (r2) alone could not indicate the valid-
ity of a QSAR model. The established criteria for external validation have some advantages and disadvantages which 
should be considered in QSAR studies.

Conclusion: This study showed that these methods alone are not only enough to indicate the validity/invalidity of a 
QSAR model.
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Introduction
Quantitative structure–activity relationship (QSAR) is a 
numerical method for finding the relationships between 
chemical structure and drug properties i.e., biological 
activity in drug discovery processes [1]. Developing a 
QSAR model composed of different stages i.e., (1) col-
lecting data from the literature, (2) calculation of param-
eters performed by different software packages such as 
Dragon software or image analysis (2D-QSAR), force 
field calculations based on three-dimensional structures 
(3D-QSAR) and etc., (3) developing the QSAR model by 
various statistical technique e.g. multiple linear regres-
sion, artificial neural network and partial least square, 

and (4) validation of the model by internal (leave one out 
and leave many out) and external validation [2]. There 
are various critical points in QSAR studies that should 
be considered by researchers [3]. However, the challenges 
on selecting appropriate parameters for external valida-
tion have been seen in the literature [4, 5].

In QSAR studies, training a model by linear and non-
linear models is not enough to confirm the prediction 
capability. The developed model should be applied 
to other data sets which did not synthesize in virtual 
screening and designing new drug compounds. On the 
way, whenever we can say a QSAR model is acceptable 
that it could predict the activity of other compounds 
with reasonable accuracy. Therefore, external valida-
tion (splitting data into training and test sets) is one 
of the major challenges in QSAR studies [6–8]. Vari-
ous types of cross validation analysis i.e., leave one out, 
leave many out and repeated double cross validation 
are recommended in QSAR studies especially when the 
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available sample size is small [9, 10]. However, external 
validation is one of the most common criteria for eval-
uating the validity of a QSAR model [11–13].

Different criteria and rules were proposed for evalu-
ating the validity of the QSAR models, which most of 
them focused on the external validation [13, 14]. Five 
criteria proposed in authentic journals were selected in 
this study and details have been described in method 
section. They are highly cited and several research-
ers were used them to evaluate validity of QSAR mod-
els [15–18]. Designers of each criterion have been 
shown advantages of them in comparison with others 
for external validation of QSAR models [5, 6, 19–21]. 
Some models have certain defects from the statistical 
viewpoint and various results are observed based on 
the applied software e.g. the correlation coefficient  (r2) 
of regression through origin [5]. Nevertheless, there is 
no comprehensive comparison between them for the 
evaluation of the external validity of QSAR models. The 
aim of this study is the comparison of external valida-
tion of QSAR models by them to find advantages and 
disadvantages of each method.

Methods
Forty-four data sets (training and test sets) composed 
of experimental biological activity and corresponding 
calculated activity (re-substitution value for training 
data set) using QSAR models with various statistical 
approaches were collected from the published articles 
[22–48] indexed in Scopus database (see Additional 
file  1 and  Table  1). The absolute error (AE) of each 
datum (absolute difference between experimental and 
calculated data) was calculated. External validation of 
these data set was assessed with the following methods:

Proposed criteria by Golbraikh and Tropsha
I.  r2 > 0:6,  r2 is the coefficient of determination between 
the experimental activity and predicted values based on 
regression analysis.

II. 0.85 < K < 1.15 or 0.85 < K’ < 1.15.
K and K’ are slopes of regression lines through the 

origin between the experimental activity and predicted, 
and vice versa, respectively.

III. r
2
−r

2
0

r2
<0.1 or

r2−r
′2
0

r2
<0.1

r0.2 and r′2
0

 is the coefficient of determination between 
the experimental activity and predicted values and pre-
dicted versus experimental activity, respectively, based 
on regression through origin analysis (linear regression 
by least square method without a constant term) [19].

Proposed criteria by Roy based on regression 
through origin (RTO)
Roy and coworkers suggested r2m which calculated by 
Eq. 1, and it is one of the most famous equations which 
used by QSAR experts in literature [20, 49]:

In this equation,r2
0
 value computed using regression 

through origin (RTO) and RTO referred to linear regres-
sion by least square method without a constant term.
Concordance correlation coefficient (CCC)
Gramatica and coworker [4] suggested the concordance 
correlation coefficient (CCC) for external validation of a 
QSAR model:

Yi is the experimental value, −
Y

 is the average of experi-
mental values, Yi

′ is the predicted value of activity and Yi 
is the average of the predicted value of the activity. EXT 
is external prediction set or test set. CCC > 0.8 accounts 
as a valid model.

Statistical significant between deviation of experimental 
activity and calculated data
In 2014, our research group challenged the regression 
through origin and proposed the calculation of model 
errors for training and test sets and comparison of them 
as a reliable method to external validation of QSAR mod-
els [5].

Criteria based on training set range and the deviation 
between experimental and calculated data
Roy and coworkers [21] similar to our method (method 
4) proposed new principles based on training set range 
and absolute average error (AAE) i.e., the difference 
between experimental and the predicted values of test 
set, and corresponding standard deviation (SD) for train-
ing and test sets as follows:

Good prediction: AAE ≤ 0.1 × training set range and 
AAE + 3 × SD ≤ 0.2 × traning set range

Bad prediction: AAE > 0.15 × training set range or 
AAE + 3 × SD > 0.25 × traning set range

A good model should be passed both above criteria. 
However, the predictions which fall into one of the con-
ditions could be considered as of moderately acceptable 
model.

(1)r2m = r2
(

1−

√

r2 − r2
0

)
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Table 1 The numerical values of statistical parameters which need to calculate mentioned criteria for external validation for 44 
developed QSAR models

No. Number of 
compounds in 
training set

Number of 
compounds in 
test set

r2 > 0.6 r
2

0
(Eq. 3) r

′
2

0
(Eq. 4) r

2

0
= r

′
2

0
(Eq. 5) AEE ± SD

Training set
AEE ± SD
Test set

Training 
set range

Refs.

1 39 10 0.917 0.909 0.917 0.999 0.161 ± 0.114 0.221 ± 0.110 4.07 [23]

2 39 10 0.880 0.879 0.857 0.999 0.237 ± 0.234 0.318 ± 0.150 4.07 [23]

3 31 10 0.715 0.715 0.617 0.997 0.167 ± 0.171 0.266 ± 0.244 1.72 [24]

4 26 11 0.725 0.310 0.691 0.997 0.233 ± 0.167 0.354 ± 0.301 2.74 [25]

5 40 10 0.906 0.904 0.904 0.999 0.121 ± 0.091 0.206 ± 0.095 2.68 [26]

6 40 10 0.892 0.879 0.892 0.999 0.122 ± 0.087 0.195 ± 0.146 2.68 [26]

7 68 17 0.261 0.012 0.052 0.957 0.503 ± 0.435 1.165 ± 0.715 5.00 [27]

8 68 17 0.444 0.220 0.404 0.977 0.331 ± 0.674 0.435 ± 0.326 4.60 [27]

9 42 11 0.834 0.823 0.818 0.824 0.872 ± 0.678 1.630 ± 1.256 14.46 [28]

10 42 9 0.588 0.552 0.511 0.999 0.040 ± 0.035 0.169 ± 0.124 1.85 [29]

11 42 9 0.748 0.496 0.730 0.999 0.053 ± 0.043 0.133 ± 0.077 1.85 [29]

12 20 6 0.963 0.962 0.983 0.787 0.052 ± 0.043 0.035 ± 0.035 0.91 [30]

13 90 22 0.372 0.376 -0.292 0.950 0.432 ± 0.648 0.538 ± 0.647 6.95 [31]

14 68 17 0.382 0.136 0.309 0.975 0.364 ± 0.324 0.457 ± 0.356 4.90 [31]

15 27 5 0.088 − 2.263 − 1.129 0.995 0.074 ± 0.094 0.315 ± 0.135 0.40 [32]

16 27 7 0.818 − 1.721 0.563 0.993 0.412 ± 0.352 0.645 ± 0.489 3.76 [33]

17 27 7 0.763 − 4.030 0.462 0.992 0.359 ± 0.290 0.729 ± 0.511 3.76 [33]

18 89 19 0.932 0.932 0.928 0.998 0.187 ± 0.151 0.246 ± 0.204 3.95 [34]

19 89 19 0.821 0.813 0.811 0.995 0.255 ± 0.186 0.339 ± 0.368 3.95 [34]

20 66 16 0.703 0.514 0.914 0.984 0.444 ± 0.338 0.678 ± 0.411 5.45 [35]

21 66 16 0.671 0.475 0.700 0.983 0.384 ± 0.324 0.706 ± 0.461 5.45 [35]

22 66 16 0.914 0.908 0.670 0.995 0.288 ± 0.232 0.297 ± 0.307 5.45 [35]

23 32 11 0.790 0.006 0.683 0.993 0.120 ± 0.094 0.501 ± 0.249 4.68 [47]

24 40 12 0.876 0.875 0.845 0.999 0.090 ± 0.079 0.238 ± 0.088 3.35 [36]

25 40 12 0.866 0.814 0.861 0.999 0.079 ± 0.084 0.205 ± 0.140 3.35 [36]

26 63 16 0.999 0.999 0.999 1.000 0.011 ± 0.006 0.011 ± 0.006 3.76 [37]

27 40 4 0.960 0.693 0.863 1.000 0.155 ± 0.118 0.178 ± 0.105 4.25 [38]

28 22 7 0.995 0.995 0.995 1.000 0.043 ± 0.064 0.046 ± 0.032 2.56 [39]

29 22 7 0.971 0.971 0.971 0.999 0.101 ± 0.127 0.097 ± 0.097 2.56 [39]

30 50 18 0.914 0.796 0.879 1.000 0.041 ± 0.038 0.068 ± 0.134 2.35 [40]

31 50 18 0.994 0.993 0.992 1.000 0.031 ± 0.028 0.026 ± 0.028 2.35 [40]

32 52 12 0.815 0.686 0.801 0.983 0.340 ± 0.269 0.297 ± 0.261 3.32 [41]

33 58 6 0.964 0.949 0.958 1.000 0.051 ± 0.048 0.127 ± 0.117 2.90 [42]

34 58 6 0.966 0.965 0.962 1.000 0.066 ± 0.052 0.105 ± 0.076 2.90 [42]

35 47 16 0.899 0.878 0.898 0.999 0.195 ± 0.117 0.186 ± 0.153 2.16 [43]

36 52 20 0.533 0.367 0.511 0.995 0.566 ± 0.378 0.383 ± 0.314 4.28 [44]

37 52 20 0.659 0.533 0.657 0.997 0.554 ± 0.521 0.327 ± 0.230 4.28 [44]

38 52 20 0.744 0.714 0.733 0.998 0.355 ± 0.343 0.282 ± 0.213 4.28 [44]

39 52 20 0.815 0.785 0.814 0.998 0.290 ± 0.358 0.246 ± 0.181 4.28 [44]

40 31 10 0.658 0.475 0.658 0.995 0.097 ± 0.064 0.272 ± 0.202 2.17 [45]

41 68 8 0.898 0.865 0.935 0.999 0.125 ± 0.110 0.204 ± 0.151 4.03 [46]

42 68 8 0.855 0.702 0.828 0.998 0.199 ± 0.115 0.270 ± 0.148 4.03 [46]

43 53 18 0.806 0.678 0.795 0.996 0.122 ± 0.118 0.279 ± 0.203 3.78 [48]

44 53 18 0.676 0.109 0.640 0.993 0.329 ± 0.271 0.362 ± 0.276 3.78 [48]
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Results and discussion
Table  1 listed the numerical values of statistical param-
eters that need to calculate the mentioned criteria for 
external validation of 44 developed QSAR models.

The main factor in the validation of QSAR models from 
a statistical point is different equations even to calculate 
simple parameters such as  r2 and  r0

2 [22, 50]. These dif-
ferent equations will affect the comparison. The  r2 in this 
work was calculated by SPSS software based correlation 
between experimental and calculated values. However, 
in the studied criteria in this work, there is a controversy 
in the calculation of  r0

2. The following equations were 
applied to the calculation of  r0

2 and in method 1, 2 and 
Excel software [21]

Instead, the alternative formula was proposed instead of 
the Eqs. 3 and 4 because of statistical defects to the calcu-
lation of  r2 of RTO [5, 22] which recommended by statis-
tical books in the literature [51, 52]:

In addition to statistical defects in Eq. (3) and (4) for the 
calculation of  r0

2 and  r0
′2, QSAR researchers, may apply 

Eq.  (5) which proposed as an appropriate equation for 
 r0

2 and officinal statistical package such as SPSS, and do 
not give reasonable results. Calculation of r2m based on 
computed r2

0
 by Eq.  (5) (or SPSS software) is not possi-

ble because of  r2 is commonly less than r2
0
 and therefore 

r2 - r
2
0
< 0 . This is the most defect of methods 1 and 2 for 

the external validation of QSAR models.
Seven of the studied models have  r2 < 0.6 (Table  2). 

Therefore, they could not account as valid models.  r2 is 
simple parameter to evaluate the correlation between 
experimental and predicted values in QSAR studies and 
for estimating the correlation between concentration and 
response in analytical chemistry. It is a primary criterion, 
and a QSAR model or a developed analytical method 
with a high  r2 value does not necessarily have an accept-
able validity [53, 54]. In addition, the squared factors e.g. 
 r2, negatively affects the possibility to distinguish errors 
in one or in another direction: overpredicted or under-
predicted values; these two kinds of errors have a huge 
different in toxicity and regulatory evaluation.

(3)r
2
0 = 1−

∑
(

Yi −
(

Yfit = KYi′
))2

∑
(

Yi − Y i

)2

(4)r
′2
0 = 1−

∑
(

Yi −
(

Yfit = K
′
Yi

′

))2

∑
(

Yi − Yi

)2

(5)r
2
0 = r

′2
0 =

∑

Y
2

fit

∑

Y
2
i

The numerical values of other proposed criteria in 
method 1 show that all models have K or K’ between 

0.85 and 1.15. The third rule ( r
2
−r

2
0

r2
<0.1 or

r2−r
′2
0

r2
<0.1 ) is 

only non-acceptable for 7 models which 3 of them have 
 r2 < 0.6. Therefore, based on the suggested principles in 
method 1, 11 models are not valid.

Method 2 proposed based on RTO and  r0
2 calculated by 

Eq.  (3). Twenty-six models have r2m > 0.5, and the results 
are similar to method 1 (both of them are based on RTO). 
The valid models based on method 1 with  r2 > 0.75 have 
r2m > 0.5 except model 27 with  r0

2 = 0.101 (close to thresh-
old, 0.1).

The third studied method was proposed by Gra-
matica and named CCC [4]. Twenty-nine models have 
CCC > 0.8. All of them are valid models based on method 
1. The results of methods 2 and 3 are very similar. Two 
models (20 and 27) only have CCC > 0.8 while the defined 
values near to threshold i.e., 0.4 < r2m < 0.5. Method 3 is 
comparable to developed methods based on RTO. How-
ever, it has not statistical defects and non-identical datum 
for  r0

2 based on proposed equations (Eq.  (3) and (4) or 
Eq. (5)) or software (e.g. Excel or SPSS).

Method 4 is based on the calculation of model errors 
for training and test sets and compares them as a pos-
sible reliable method to external validation for models 
with  r2 > 0.6 for test set. The aim of developing a QSAR 
model is the prediction and elucidation of mechanisms of 
drug action. It is obvious that the prediction capability of 
training and test sets should be identical. Without con-
sidering the training set, it possible statistical parameters 
for external validation of test set could be acceptable but 
a significant difference (independent t-test) between pre-
diction power of training and test set might be a weak-
ness for the model. Twenty-six models have  r2 > 0.6 and 
no significant difference between absolute error (AE) of 
training and test sets (p > 0.05). Twenty-three models of 
them have been selected by CCC as a valid model (CCC 
> 0.8 and p > 0.05). Model 16 has a CCC = 0.55, and AAE 
of training and test sets are 0.412 ± 0.352 and 0.645 ± 
0.489 (p = 0.16), respectively. High values for SD because 
of outlier data, is the possible reason for non-significant 
difference between AEs and it could not account valid-
ity of the developed model. On the other hand, models 5, 
24 and 25 have CCC > 0.9 and p < 0.01. The relative fre-
quencies of AEs for models 5, 24 and 25 sorted in three 
subgroups, < 0.1, 0.1–0.2 and > 0.2 and illustrated in 
Figure 1. In these models, AAE values are low; however, 
there is 50–250% difference between AAE of training and 
test sets. On the other hand, in model 5, 48% of the train-
ing set and 10% of test sets have AE less than 0.1 while 
15% of the training set and 60% of test set have AE more 
than 0.2. Similar patterns are observed in models 24 and 
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Table 2 Values of the proposed criteria (method 1–5) for external validation of QSAR models

a r2<r2
0

b AAE + 3 × SD
c 0.1 × training set range
d 0.2 × training set range
e 0.15 × training set range
f 0.25 × training set range

G good, MG moderately good, B Bad

Model Method 1 Method 2 Method 3 Method 4 Method 5

r2 > 0.6 0.85 < K or 
K´ < 1.15

r
2
−r

2

0

r2
or

r
2
−r

′
2

0

r2
<0.1

r
2
m

 > 0.5 CCC > 0.8 p-value Ib IIc IIId IVe Vf VIg

1 0.917 1.00 1.00 0.010 0.000 0.83 0.95 0.14 0.55 0.41 0.81 0.61 1.02 G

2 0.880 1.01 0.98 0.000 0.025 0.86 0.92 0.31 0.77 0.41 0.81 0.61 1.02 G

3 0.715 1.00 1.00 0.000 0.138 0.71 0.84 0.18 1.02 0.17 0.34 0.26 0.43 B

4 0.725 0.98 1.02 0.573 0.047 0.26 0.77 0.23 1.26 0.27 0.55 0.41 0.69 B

5 0.906 1.00 1.00 0.002 0.003 0.86 0.95 0.01 0.49 0.27 0.54 0.40 0.67 G

6 0.892 1.00 1.00 0.015 0.000 0.79 0.94 0.16 0.63 0.27 0.54 0.40 0.67 M

7 0.261 0.98 0.98 0.956 0.800 0.13 0.51  < 0.01 3.31 0.50 1.00 0.75 1.25 B

8 0.444 0.97 1.01 0.506 0.090 0.23 0.66 0.543 1.41 0.46 0.92 0.69 1.15 B

9 0.834 0.74 1.11 0.014 0.020 0.75 0.89 0.08 5.40 1.35 2.70 2.02 3.37 B

10 0.588 1.02 0.98 0.062 0.131 0.48 0.68 0.01 0.54 0.19 0.37 0.28 0.46 B

11 0.748 0.98 1.02 0.336 0.024 0.37 0.75 0.01 0.36 0.19 0.37 0.28 0.46 G

12 0.963 1.05 0.92 0.001 − 0.021 0.93 0.97 0.41 0.14 0.09 0.18 0.14 0.23 G

13 0.372 1.00 0.95 − 0.012 1.786 NDa 0.57 0.49 2.48 0.70 1.40 1.05 1.74 B

14 0.382 1.01 0.97 0.644 0.189 0.19 0.61 0.30 1.53 0.49 0.98 0.74 1.23 B

15 0.088 1.02 0.97 26.745 13.844 − 0.05 − 0.25  < 0.01 0.72 0.04 0.08 0.06 0.10 B

16 0.818 1.05 0.95 3.105 0.312 − 0.49 0.55 0.16 2.11 0.38 0.75 0.56 0.94 B

17 0.763 1.05 0.94 6.282 0.394 − 0.91 0.43 0.02 2.26 0.38 0.75 0.56 0.94 B

18 0.932 1.01 0.99 0.000 0.004 0.92 0.96 0.14 0.80 0.40 0.79 0.59 0.99 M

19 0.821 1.01 0.98 0.009 0.012 0.75 0.90 0.34 1.44 0.40 0.79 0.59 0.99 B

20 0.703 0.97 1.01 0.270 − 0.300 0.40 0.81 0.02 1.91 0.55 1.09 0.82 1.36 B

21 0.671 0.96 1.02 0.292 − 0.044 0.37 0.79 0.02 2.09 0.55 1.09 0.82 1.36 B

22 0.914 0.99 1.03 0.007 0.268 0.84 0.95 0.90 1.22 0.55 1.09 0.82 1.36 M

23 0.790 0.91 1.09 0.992 0.136 0.09 0.60  < 0.01 1.25 0.47 0.94 0.70 1.17 B

24 0.876 1.00 1.00 0.002 0.035 0.84 0.93  < 0.01 0.50 0.34 0.67 0.50 0.84 G

25 0.866 0.99 1.01 0.059 0.005 0.67 0.92 0.01 0.62 0.34 0.67 0.50 0.84 G

26 0.999 1.00 1.00 0.000 0.000 1.00 1.00 0.65 0.03 0.38 0.75 0.58 0.94 G

27 0.960 0.98 1.02 0.278 0.101 0.46 0.83 0.72 0.03 0.43 0.85 0.64 1.06 G

28 0.995 1.00 1.00 0.000 0.000 0.99 1.00 0.90 0.14 0.26 0.51 0.38 0.64 G

29 0.971 1.00 1.00 0.000 0.000 0.96 0.99 0.93 0.39 0.26 0.51 0.38 0.64 G

30 0.914 1.00 1.00 0.129 0.038 0.60 0.93 0.42 0.47 0.24 0.47 0.35 0.59 M

31 0.994 1.00 1.00 0.002 0.002 0.96 1.00 0.51 0.11 0.24 0.47 0.35 0.59 G

32 0.815 1.03 0.95 0.158 0.017 0.52 0.87 0.61 1.09 0.33 0.66 0.50 0.83 B

33 0.964 1.01 0.99 0.016 0.006 0.85 0.96 0.18 0.48 0.29 0.58 0.44 0.73 G

34 0.966 1.00 1.00 0.001 0.004 0.94 0.98 0.10 0.33 0.29 0.58 0.44 0.73 G

35 0.899 1.02 0.98 0.023 0.001 0.77 0.91 0.81 0.64 0.22 0.43 0.28 0.54 B

36 0.533 1.01 0.98 0.311 0.041 0.32 0.71 0.06 1.33 0.43 0.86 0.64 1.07 B

37 0.659 1.00 1.00 0.191 0.003 0.43 0.80 0.07 1.02 0.43 0.86 0.64 1.07 M

38 0.744 1.00 1.00 0.040 0.014 0.62 0.86 0.38 0.92 0.43 0.86 0.64 1.07 M

39 0.815 1.01 0.99 0.037 0.001 0.67 0.89 0.50 0.79 0.43 0.86 0.64 1.07 G

40 0.658 0.97 1.03 0.278 0.000 0.38 0.77 0.02 0.88 0.22 0.43 0.33 0.54 B

41 0.898 0.99 1.01 0.037 − 0.041 0.73 0.94 0.03 0.66 0.40 0.81 0.60 1.01 G

42 0.855 1.00 1.00 0.179 0.032 0.52 0.89 0.06 0.71 0.40 0.81 0.60 1.01 G

43 0.806 1.00 0.99 0.159 0.014 0.52 0.87 0.01 0.89 0.38 0.76 0.55 0.95 M

44 0.676 0.99 1.00 0.838 0.053 0.17 0.74 0.66 1.19 0.38 0.76 0.55 0.95 B
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25. In addition, for those models, residual plots have been 
illustrated in Figure 2. These plots confirm that there is a 
significant difference between the prediction capability of 
developed models for training and test sets and it could 
not be acceptable for a QSAR model to approve predic-
tion capability.

The last method (method 5) proposed by Roy’s research 
group based on the training set range and mean and 
standard deviation of test set data [21]. The models could 
be classified as GOOD, MODERATELY GOOD and BAD 
according to their proposed parameters. Most of the 
models were categorized as BAD (45%) and GOOD (39%) 
and a few models were MODERATELY GOOD models 
(Table 2). The first point that should be considered is  r2 
> 0.6 as a necessary criterion. All models which have  r2 
< 0.6 classified as BAD model. Moreover, a good correla-
tion is observed between CCC and GOOD model based 

on method 5. However, model 11 is a GOOD model 
while CCC = 0.75 and there is a significant difference 
between AE of training and test set (AAE of training and 
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test sets are 0.05 and 0.13, respectively and p = 0.01). In 
comparison with method 4, models 5, 24 and 25 (GOOD 
models) have a vast difference between AAE of training 
and test set (Figure 1), although the proposed principles 
in method 5 could not detect it. A model with a statis-
tically significant difference between the AE of training 
and test sets might not confirm developing a valid model.

Furthermore, model 3 is a BAD model while CCC = 
0.84 and p-value for the difference between AE of train-
ing and test is 0.18. AAE of the training set is 0.167 ± 
0.171 and 0.266 ± 0.244 (AE ± SD), respectively. High 
values for SD of training and test sets indicate that there 
are outlier data which could be considered using statis-
tical parameters e.g. SD of mean errors, in the external 
validation of QSAR models.

Typographic errors and un-uniformity of applied data 
set for QSAR modeling or mistake in the determination 
of the biological activity of studied compounds are a 
common reason for outlier data, which can decrease the 
prediction capability of a model. Docking study of outlier 
cases and comparison with other compounds can help 
researchers to detect outlier data in developing a QSAR 
model [55].

These results confirm the results of previous stud-
ies which more than a single criterion is recommended 
to assess the real external predictivity of QSAR models 
[56]. Moreover, other recommended guidelines in devel-
oping QSAR models such as cross validation, appropri-
ate splitting training and test sets variable allocation and 
correlation coefficients adjusted by degrees of freedom, 
are other important issues in QSAR studies which should 
be considered by researchers  [10, 57–59]. In addition, 
cross (internal) validation analysis e.g., leave many out 
and leave one out are recommended in QSAR studies 
especially when the sample size is small [9, 10], and some 
reports showed its superiority in external validation [60]. 
Therefore, both internal and external validation analysis 
with considering various criteria are necessary to check 
the validity of a QSAR model.

Conclusion
The aim of developing a QSAR model is an acceptable 
prediction of activity of a compound before synthesis 
and biological evaluation. Therefore, external validation 
is necessary. All of the developed methods for external 
validation of a QSAR model are useful and a good cor-
relation was observed between the studied methods for 
the selected models. However, some differences were 
detected between established methods. Methods 1 and 
2 are valuable but they are some questionable points in 
the applied equation for r2

0
 calculation. CCC is a valuable 

parameter, though in some cases, it cannot detect outlier 
data. Similar to methods 1 and 2, training data set are not 

included in CCC. Method 4 and 5 established based on 
training and test sets. They detected most invalid models, 
but method 5 considered some model as a GOOD model 
while the difference between AE of training and test sets 
are substantial (p < 0.05). On the other way, high SD value 
in both of training and test sets may pass proposed cri-
terion of method 4 while accounted as a invalid  model 
because of outlier data in training and test sets. Finally, 
evaluation of a model with either established method is 
useful, but they did not necessarily mean validity/invalid-
ity of a QSAR model. The results of this study show the 
importance of calculation error of training and test sets 
and detection of outliers for checking the validity of a 
model.
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