
Tabibi et al. BMC Chemistry          (2023) 17:115  
https://doi.org/10.1186/s13065-023-01034-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Chemistry

Characterization of green synthesized 
selenium nanoparticles (SeNPs) in two different 
indigenous halophilic bacteria
Maryam Tabibi1, Soheil Aghaei1*, Mohammad Ali Amoozegar2*, Razieh Nazari1 and 
Mohammad Reza Zolfaghari3 

Abstract 

Background  In the biological method, using nonpathogenic and extremophile bacteria systems are not only safe 
and highly efficient but also a trump card for synthesizing nanoparticles. Halomonas elongata QW6 IBRC-M 10,214 
(He10214) and Salinicoccus iranensis IBRC-M 10,198 (Si10198), indigenous halophilic bacteria, can be used for synthesiz-
ing selenium nanoparticles (SeNPs).

Methods  SeNP biosynthesis was optimized in two halophilic bacteria and characterized by UV–Vis, Fourier transform 
infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy 
(FESEM), X-ray powder diffraction (XRD), zeta potential, and energy dispersive X-ray (EDX).

Results  Optimized conditions for synthesizing SeNPs was at 300 °C at 150 rpm for 72 h and 6 mM or 8 mM concen-
tration of Na2SeO3. UV–Vis indicated a sharp absorption peak at 294 nm. Spherical-shaped nanoparticles by a diam-
eter of 30–100 nm were observed in FESEM and TEM microscopy images. The produced SeNPs were identified 
by a peak in FTIR spectra. In XRD analysis, the highest peak diffraction had a relationship with SeNPs. The zeta poten-
tial analysis showed SeNP production, and elemental selenium was confirmed by EDX.

Conclusions  Halophilic bacteria, owing to easy manipulation to create optimization conditions and high resist-
ance, could serve as appropriate organisms for the bioproduction of nanoparticles. The biological method, due 
to effectiveness, flexibility, biocompatibility, and low cost, could be used for the synthesis of reproducible and stable 
nanoparticles.
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Introduction
Nanoparticle synthesis has been interested in recent 
years. This process is a bridge gap between bulk material 
and atomic or molecular structure and has much applica-
bility in various fields such as medicine, chemistry, biol-
ogy, electronics, and energy [1–7]. The importance of 
nanoparticles depends on their structure and functional 
characteristics [8].

Selenium is a trace element, sometimes a metal-
loid, with abundant properties and functions, including 
semiconductor, thermoelectric and catalytic activities 
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to hydration and oxidation reactions [9, 10]. It acts as 
an antioxidant and prevents the damage of body tissues 
against oxidative reactions. Selenium reduces the risk of 
various cancers, including lung, pancreas, stomach, and 
intestine cancers and has an inhibitory effect on some 
bacteria. In spite of many advantages reported, selenium 
is highly toxic, and its large amounts can have adverse 
effect. By producing selenium nanoparticles (SeNPs), 
nanotechnology researchers could reduce the risk of tox-
icity of this element. The biological activity of SeNPs is 
highly dependent on their size. Compared to standard 
selenium compounds, these particles have high biochem-
ical activity so that 5-200 nm of selenium could directly 
eliminate free radicals in the laboratory environment [11, 
12].

Nanoparticle synthesis by physical and chemical meth-
ods faces difficulties and impediments that could be 
managed by the biological approach [13]. The synthesis 
of SeNPs by this method has been demonstrated to be 
safe, inexpensive, and eco-friendly, and there is no need 
for toxic materials [14, 15]. For the bioproduction of 
metalloid nanoparticles, various microorganisms, such 
as bacteria, algae, yeast, and fungi, are used [16]. These 
microorganisms have ability to tolerate a high concentra-
tion of toxic heavy metals [17]. The halophilic bacteria 
can act as bioassay indicators in a polluted environment 
[18]. The majority of catalytic enzymes in halophilic bac-
teria play a role in eliminating toxic and chemical mate-
rials and also the harmful anions and cations, without 
leading to the death of these bacteria [19, 20]. As a result, 
using halophilic bacteria influences both the environ-
ment and the survival of organisms [20]. Microorgan-
isms can synthesize nanoparticles by the intracellular and 
extracellular techniques [14]. In the intracellular method, 
metal ions penetrate into bacterial cells, and then nano-
particles are produced by the enzymatic reactions, thus 
reducing agents inside the cell. However, in the extra-
cellular method, the metal ions are put on the cell sur-
face, and nanoparticle synthesis is performed by surface 
enzymes [21]. While the extracellular method has more 
advantages, e.g. the recovery facilitation of nanoparticles 
and low cost, over intracellular approach, many bacte-
ria synthesize nanoparticles by the intracellular method 
[22]. In other words, the synthesis of SeNPs is carried out 
by the bioreduction process because reduced metal ion 
converts to stable biological form [23]. The biosynthesis 
of SeNPs is assumed to help remove heavy metals from 
polluted waters around industrial environments. Based 
on literature review, there are numerous reports on the 
production of SeNPs by chemical, physical, and the bio-
logical method, but scant surveys have examined the 
biological synthesis of these nanoparticles by halophilic 
bacteria in Iran. Therefore, this study for the first time 

biosynthesizes SeNPs using the intracellular method in 
two halophilic bacteria, Halomonas elongata IBRC-M 
10,214 (He10214) and Salinicoccus iranensis strain QW6 
IBRC-M 10,198 (Si10198), isolated from the native region 
of Iran. In this light, SeNPs were characterized by the 
aid of various analytical techniques, comprising ultravi-
olet-visible (UV–Vis) spectroscopy, Fourier transform 
infrared spectroscopy (FTIR), X-Ray diffraction (XRD), 
transmission electron microscopy (TEM), field emission 
scanning electron microscopy (FESEM), energy disper-
sive X-ray (EDX), and zeta potential (Additional file  1: 
Fig. S1).

Methods
Chemical substances and bacterial strains
For SeNP biosynthesis, sodium selenite (Na2SeO3; 
172.94  g/mol) was purchased from AppliChem GmbH 
(Germany). The stock solution was prepared by dis-
solving Na2SeO3 (0.345  g) in 10 mL of distilled water, 
followed by sterilization using a microbiological filter 
(0.22  μm). He10214, a Gram-negative moderately halo-
philic and heavy metal resistance bacterium, was isolated 
from Qom Salt Lake (Qom, Iran). Likewise, the moder-
ately halophilic, Gram-positive bacterium, Si10198, was 
isolated from the wastewater of textile industry in Qom 
[24].

Culture media and growth conditions
He10214 and Si10198 were cultivated aerobically at room 
temperature in a medium as follows (%, w/v): NaCl, 17.8; 
MgSO4, 0.96; CaCl2, 0.036; KC1, 0.2; NaHCO3, 0.006; 
NaBr, 0.0026; MgCl2, 0.7; yeast extract, 0.1; glucose, 0.1; 
proteose-peptone, 0.5; agar, 1.5 in 1 L of water containing 
5% (w/v) NaCl, pH 7.2, adjusted with KOH [22].

Intracellular synthesis of SeNPs by halophilic strains
At first, 1 µL of the inoculum (OD600 = 0.1) was trans-
ferred to a 100-mL Erlenmeyer flask and treated with 
different concentrations of Na2SeO3 (Table  1). Then the 
production of SeNPs was optimized by incubating cul-
tures in an orbital shaking incubator according to the 

Table 1  Parameters for the optimization of biosynthesis of 
SeNPs

Cond 1, 2, 3, 4: optimal conditions for SeNPs production

Characterization of SeNPs

No. Parameter Cond 1 Cond 2 Cond 3 Cond4

1 Na2SeO3 concentration (M) 2 4 6 8

2 Incubation temperature (°C) 30 32 35 37

3 Culturing time (h) 24 48 72 96

4 Shaker (rpm) 150 180 210 240
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conditions depicted in Table  1. For the formation of a 
pellet containing SeNPs and cells, the red culture, show-
ing the formation of SeNPs, was transferred to 50-mL 
centrifuge tubes, followed by centrifugation at 5000 rpm 
for 10  min. After supernatant removal, the pellet was 
resuspended in NaCl (0.9%) and centrifuged (5000 rpm, 
10 min); this step was repeated two times. Subsequently, 
liquid nitrogen was added to the precipitation. Following 
the formation of a uniform powder, the cell mixture con-
taining SeNPs was ultrasonicated for 5 min. Also, the pel-
let was centrifuged in Tris-HCL buffer (1.5 M) containing 
SDS (1%) at 8000 rpm for 10 min (pH 3.8); thereafter, it 
was washed several times in sterile distilled water. A two-
phase (organic-aqueous) system was used to separate 
SeNPs from cellular debris. For this purpose, following 
the addition of 2 mL of n-octyl alcohol to 4 mL of suspen-
sion obtained from the previous stage, the mixture was 
shaken to admix thoroughly the organic-aqueous phase. 
The tubes were centrifuged (at 3000 rpm for a period of 
5 min) and incubated at 4 °C for 24 h. The organic-aque-
ous phase was slowly discarded, and the remaining nano-
particles were rinsed with chloroform, ethanol (70%), and 
distilled water, respectively. Finally, the purified nanopar-
ticle suspension was stored at 4  °C [25]. The suspension 
was dried in an oven overnight for subsequent analysis.

UV–Vis spectrophotometry and FTIR
The first strategy to evaluate the production of nano-
particles was UV–Vis spectroscopy analysis, which was 
conducted by dispersing the nanoparticle suspension 
in distilled water. The absorption spectra of the SeNPs 
were recorded with wavelengths ranging between 200 
and 800 nm using Varian Cary 100 UV–Vis instruments 
(USA). The control curve was obtained from distilled 
water, and the chemical structure of SeNPs was studied 
by FTIR analysis. The powder of the samples was mixed 
with KBr pellets. The FTIR spectrum was recorded in 
4395–4495  cm−1 and 4388–4488  cm−1 regions on a 
WQF-510  A FTIR spectrometer (Rayleigh, China) at a 
resolution of 4 cm−1 for produced SeNPs using He10214 
and Si10198.

TEM
The size and morphology of nanoparticle powder were 
determined using TEM. SeNPs synthesized by He10214 
and Si10198 were characterized by the Zeiss EM900 
transmission electron microscope (Germany) at an accel-
erating voltage of 200 kV.

FESEM and EDX
For the analysis of the shape of SeNPs, images were taken 
with SEM (FEI QUANTA 450) at 20  kV HV. EDX was 
used to ascertain elemental selenium in solid samples. 

This process was performed by BRUKER Q200 (Ger-
many). X-ray spectrometer analysis and FESEM were 
simultaneously employed to indicate electron production 
mapping and point analysis.

XRD
The crystal structure of SeNPs was characterized by 
XRD on Ultima IV (Rigaku, Japan) at a voltage of 40 kV 
with CuKα radiation 1.22 0  A and a scanning rate of 4 
degrees per minutes. The crystallite domain size of the 
synthesized SeNPs was obtained by Debye–Scherrer for-
mula: D =

K∗�

β∗cosθ
.

Zeta potential
Zeta potential is one of the most important parameters 
for the stability of nanoparticles in suspension. The zeta 
potential of SeNPs was analyzed using SZ-100 (Horiba 
Jobin Yvon SAS, USA). For this purpose, the powder 
SeNPs were ultrasonicated after dissolving in double dis-
tillation water.

Results
He10214 and Si10198 as biological factories could syn-
thesize SeNPs successfully. The first evidence in the syn-
thesis of the SeNPs was the medium color change, which 
became red after the reduction of Se2O3 to Se0 (Fig. 1).

The results from UV–Vis spectroscopy demon-
strated the reduction of SeO−2

3
 to Se0 by the two afore-

mentioned bacteria (Fig.  2). Identification of a strong 
absorption peak at 294  nm confirmed the formation of 
SeNPs. Moreover, the maximum production of SeNPs by 
Si10198 occurred at 6 mM of Na2SeO3, and the increas-
ing concentration of Na2SeO3 did not influence the peak 
(Fig.  2a). To investigate the yield of SeNPs, the same 
above-mentioned method was used for He10214. The 
results indicated the maximum production of SeNPs at 8 
mM of Na2SeO3 (Fig. 2b).

The chemical structure of SeNPs obtained from 
He10214 and Si10198 was investigated by FTIR. This 
technique was employed to study the functional groups 
responsible for the synthesis of SeNPs. The peaks at 
2924 cm−1 and 2852 cm−1 or 2920 cm−1 and 2850 cm−1 
affirmed the presence of ether-methoxy-OCH3 groups 
in He10214 and Si10198, respectively (Fig. 3). The other 
peaks associated with the functional groups observed in 
the FTIR spectra of both bacteria are listed in Table 2.

The electron microscopic images of SeNPs is repre-
sented in Fig. 4 and shows a spherical shape with a mean 
diameter of around 50–100 nm and 30–100 nm in 6 and 
8 mM of Na2SeO3, synthesized by He10214 and Si10198, 
respectively. Images obtained from FESEM confirmed 
the spherical shape of SeNPs biosynthesized by the two 
bacteria (Fig. 5).
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The EDX analysis of SeNPs synthesized by He10214 
and Si10198, as shown in Fig.  6, exhibited that absorp-
tion peaks in both bacteria were 1.4 (SeLα), 11.7 (SeKα), 
and 12.5 KeV (SeKβ). XRD analysis also confirmed the 
synthesis of SeNPs by the two bacteria (Fig. 7). The high-
est intense peak was detected at 54 cps, and the diffrac-
tion peak was about 29.5 (2θ). Owing to the impurity 
of nanoparticles and adherence of bacteria, the peak in 
our study was lower than other studies [12, 26], and the 
standard diffraction peak at 2θ was observed at ~ 30, with 
the intensity of 101. The zeta potential of the synthesized 
SeNPs by Si10198 was found to be − 60.6 mV (Fig.  8a), 
while that of He10214 was − 51.2 mV (Fig. 8b).

Discussion
The present study explored that He10214 and Si10198 as 
a biological factory could successfully synthesize SeNPs. 
The high compatibility of these bacteria in specific 

environmental conditions and their structural charac-
teristics shows that halophilic bacteria have a prominent 
role in the production of SeNPs. While the high amount 
of selenium is toxic for humans, plants, and microor-
ganisms, owing to the  antioxidant and antimicrobial 
features, this element has a leading function in the pro-
tection of the ecosystem. As a result, SeNP biosynthesis 
in optimized conditions using bacteria resistant to heavy 
metals and harsh circumstances would be cost-effective. 
In this survey, SeNP production was optimized by 6 or 8 
mM of Na2SeO3 for He10214 and Si10198, respectively at 
150 rpm, 30 °C for 72 h [15]. The red color of the culture 
affirmed the presence of SeNPs, as indicated in several 
studies [4, 10, 15, 27].

UV–Vis analysis
In the present study, the UV–Vis spectroscopy results 
exhibited that SeO−2

3
 decreased to Se0 by both He10214 

Fig. 1  Color change of the culture from light yellow to red, indicating the biosynthesis of SeNPs

Fig. 2  UV–Vis spectroscopy (200–800 nm) of SeNPs biosynthesized by a Si10198 and b He10214 using different concentrations of Na2SO3. 
c Comparing the highest production rate of SeNPs using He10214 and Si10198 
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and Si10198, which is consistent with a finding achieved 
in the Srivastava et  al.’s [26] study, in which a peak at 
300 nm was obtained from the synthesized SeNPs using 

some species of Lactobacillus. Overall, the observation 
of the peak between 200 and 300 nm indicates the pres-
ence of SeNPs [9, 28–32]. Based on the UV–Vis spectra 
of biosynthesized SeNPs by both bacteria in different 
concentrations of Na2SeO3 (6 mM and 8 mM), He10214 
could tolerate the higher concentration of selenium com-
pared to Si10198. Thus, it seems that He10214 outper-
form Si10198 in refining the selenium-rich wastewater of 
factories.

FTIR analysis
The same as fingerprints in humans, FTIR can be used 
to identify nanoparticles. This work compared the FTIR 
patterns and matched all the adsorbents in the two mol-
ecules spectrum. The peaks indicated the existence of a 
biopolymer associated with the SeNPs, which is found in 
cell walls as a reducing factor for the synthesis of SeNPs 
[27, 31]. Fritea et  al. [32] found an association between 
the absorption peak of 2918  cm−1 and SeNPs, which 
probably implies the presence of a biopolymer in the cell 
wall. On the other hand, He10214 is Gram-negative and 
Si10198 Gram-positive bacteria; the differences in the 

Fig. 3  FTIR spectrum of SeNPs biosynthesized by a Si10198 and b He10214 

Table 2  The bonds of the functional groups of SeNPs 
biosynthesized by Si10198 and He10214 

Functional group Si10198
Wavelength (nm)

He10214
Wavelength 
(nm)

Amide A (in protein) 3268 3267

C–H in –CH3 2956 3060

C–H in > CH2 2924 2920

C–H in > CH2 2852 2850

C=O 1655 1628

Amide I (in protein) 1527 1512

Amide II (in protein) 1448 1437

–CH2/–CH3 1385 1385

COO– 1211 1205

Amide III 1053 1047

C–O, C–C, C–O–H, C–O–C 804 806

Phosphoryl group 582 577
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type and thickness of their cell wall have caused slight 
variations between the absorption pattern of these two 
bacteria.

TEM analysis
The morphology of SeNPs by TEM revealed that these 
nanoparticles had a spherical shape with a mean diam-
eter of about 50–100 nm and 30–100 nm in 6 mM and 8 
mM Na2SeO3, which were synthesized by He10214 and 
Si10198, respectively. According to previous studies, the 
spherical shape of the produced nanoparticles confirms 
the presence of SeNPs [30, 33]. While these results are 
comparable with a study in which the size of these nan-
oparticles was observed at 50–150  nm [34], the size of 
the biosynthesized nanoparticles varies depending on 
the host producing these particles and also the condi-
tions of production. The sizes of biosynthesized SeNPs 
obtained by TEM was in the range of 20–80 nm [26]. In 

this regard, Avendaño et  al. [33] and Forootanfar et  al. 
[35] have observed SeNPs in the sizes 100–500 nm and 
80–220 nm, respectively.

FESEM analysis
An electron microscope FESEM is more suitable for 
imaging nanoparticles due to providing high resolu-
tion at a low voltage. As reported in numerous studies, 
the spherical and uniform shape of synthesized SeNPs is 
observable through the FESEM technique [36].

EDX analysis
The EDX analysis determines the concentrations of the 
constituent elements and their composition by scanning 
via an electron microscope [37–43]. Quantitative analy-
sis of SeNPs synthesized by He10214 and Si10198, as 
demonstrated in Fig.  6, reflected that absorption peaks 
in He10214 and Si10198 bacteria were 1.4 (SeLα), 11.7 

Fig. 4  TEM image of SeNPs biosynthesized by Si10198 (a and b; 6 mM) and He10214 (c and d; 8 mM)
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(SeKα), and 12.5 KeV (SeKβ). The highest peaks were 
related to the selenium element, and their weights in 
He10214 and Si10198 bacteria were 71.98% and 80.21%, 
respectively. The presence of carbon (C), oxygen (O), 
and platin (Pt) elements in EDX analysis might be due 
to capping with proteins and cell membranes, reactions 
of reduction, and also the stability of produced SeNPs. 
Potassium element was identified in the He10214 strain 
and the oxygen element in the Si10198 strain, which 
is likely due to different types of cell walls. In multi-
ple investigations, such as Fernández-Llamosas et  al. 
[10], Srivastava et al. [26], Cremonini et al. [44], Sharma 

et al. [12], and Dhanjal et al. [45], the selenium peak was 
explored at 1.4 (SeLα), which is the highest peak related 
to selenium synthesis.

XRD analysis
XRD analysis confirmed the synthesis of SeNPs by 
He10214 and Si10198 bacteria. The highest intensity 
peak was 54 cps, and the diffraction peak was about 29.5 
(2θ), which supports the study conducted by Alagesan 
and Venugopal [46]. Because of nanoparticles impurity 
and bacteria adherence in the current study, the peak 
was lower than that in previous studies [26, 27, 47], and 

Fig. 5  FESEM image of SeNPs biosynthesized by a Si10198 and b He10214 
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standard diffraction peak at 2θ was observed at ~ 30, with 
the intensity of 101. In a surface absorption study related 
to particle morphology and suspension stability, zeta 
potential analysis is practical [48].

Zeta potential analysis
The zeta potential of the synthesized SeNPs suspended 
was found to be − 60.6 mV by Si10198 and − 51.2 mV by 
He10214. These results of our study are in conformity with 
the findings of Mollania et al.’s [49] investigation in which 
the zeta potential reflected a high negative charge on the 
SeNPs (− 46.86 mV). However, in previous studies, the zeta 
potential of this nanoparticle has been reported in differ-
ent rates; for instance, Srivastava and Mukhopadhyay [30] 
observed the zeta potential of SeNPs in − 7.7 mV, and 

Vekariya et al. [50] reported a zeta potential of − 28.8 mV. 
Also, the zeta potential value for fabricated SeNPs using 
fungi was reported as − 22.9 mV by Zare et al. [51]. Cap-
ping and stabilization of nanoparticles by bacterial pro-
teins cause a high negative charge on the SeNPs. Stabilized 
particles are not transformed to black amorphous form 
when were kept for a long time [34, 45]. Since the zeta 
potential of SeNPs synthesized by Si10198 was more nega-
tive; therefore, this strain had a higher effective role in sta-
bilizing SeNPs. Research is being completed to produce, 
evaluate and apply nanoparticles, and human knowledge 
in this regard is increasing day by day. One of the limita-
tions of nanoparticle production is storage and particle 
size maintenance. After nanoparticle synthesis, an impor-
tant matter is the synthesis of nanoparticles that are more 

Fig. 6  EDX analysis confirming selenium element in a Si10198 and b He10214 
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stable and remain in the nanoscale for a longer period, or 
in other words, the accumulation of nanostructures is pre-
vented. The protection of body balance has been indicated 
to be dependent on the normal function of antioxidant 
compounds and enzymes [52]. The generation of oxida-
tive stress has a relationship with the altered function of 
the electron transport chain in the inner membrane of 
mitochondria [53]. The growth of biologic pollution, par-
ticularly certain drugs, heavy metals, and radiation, can 
eliminate the body’s hemostasis and increase the free 
radical production. Oxidative stress development results 
in destructing not only body cells but also biological mol-
ecules [52].

Conclusions
In the present study, SeNPs were synthesized in a bac-
terial system using the biological method, which is safe, 
effective, eco-friendly, inexpensive, and flexible. The 
findings of this survey suggest that halophilic bacteria 
He10214 and Si10198, found in the native region of Iran, 
have capability of producing nanoparticles. Under opti-
mal conditions, the two bacteria could produce SeNPs 
with 100 − 30 nm. These nanoparticles, in virtue of bio-
compatibility and high potential, could be used as anti-
oxidant, anticancer, and antimicrobial agents in future 
studies.

Fig. 7  X-ray analysis confirming the presence of SeNPs in a Si10198 and b He10214, and c SeNP standard pattern on XRD
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FESEM	� Field emission scanning electron microscopy
FTIR	� Fourier transform infrared spectroscopy
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TEM	� Transmission electron microscopy
UV–Vis	� Ultraviolet–visible
XRD	� X-ray diffraction
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