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Abstract 

This study marks a pioneering effort in utilizing Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr., (commonly 
known as acacia raddiana) leaves as both a reducing and stabilizing agent in the green “eco-friendly” synthesis of silver 
nanoparticles (AgNPs). The research aimed to optimize the AgNPs synthesis process by investigating the influence 
of pH, temperature, extract volume, and contact time on both the reaction rate and the resulting AgNPs’ morphol-
ogy as well as discuss the potential of AgNPs in detecting some heavy metals. Various characterization methods, such 
as UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), Zeta 
sizer, EDAX, and transmitting electron microscopy (TEM), were used to thoroughly analyze the properties of the syn-
thesized AgNPs. The XRD results verified the successful production of AgNPs with a crystallite size between 20 
to 30 nm. SEM and TEM analyses revealed that the AgNPs are primarily spherical and rod-shaped, with sizes ranging 
from 8 to 41 nm. Significantly, the synthesis rate of AgNPs was notably higher in basic conditions (pH 10) at 70 °C. 
These results underscore the effectiveness of acacia raddiana as a source for sustainable AgNPs synthesis. The study 
also examined the AgNPs’ ability to detect various heavy metal ions colorimetrically, including Hg2+, Cu2+, Pb2+, 
and Co2+. UV–Vis spectroscopy proved useful for this purpose. The color of AgNPs shifts from brownish-yellow to pale 
yellow, colorless, pale red, and reddish yellow when detecting Cu2+, Hg2+, Co2+, and Pb2+ ions, respectively. This 
change results in an alteration of the AgNPs’ absorbance band, vanishing with Hg2+ and shifting from 423 to 352 nm, 
438 nm, and 429 nm for Cu2+, Co2+, and Pb2+ ions, respectively. The AgNPs showed high sensitivity, with detection 
limits of 1.322 × 10–5 M, 1.37 × 10–7 M, 1.63 × 10–5 M, and 1.34 × 10–4 M for Hg2+, Cu2+, Pb2+, and Co2+, respectively. This 
study highlights the potential of using acacia raddiana for the eco-friendly synthesis of AgNPs and their effectiveness 
as environmental sensors for heavy metals, showcasing strong capabilities in colorimetric detection.
Keywords  Acacia raddiana, AgNPs, Colorimetric sensor, Hg2+, Cu2+, Pb2+, Co2+

Introduction
The word nanotechnology refers to the synthesis of novel 
materials on a nanoscale (1 to 100 nm), compared to the 
material in its bulk form. They exhibited higher capacity 
and surface area (ratio of area to volume) [1, 2].

Nanotechnology finds application across multiple 
domains such as optics [3], chemical sectors [4], electron-
ics [5], energy research [6], photocatalysis [7, 8], efficient 
drug delivery systems [9], sensor technology, solar energy 
harvesting, and fuel cells [10], along with environmental 
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uses [11, 12]. It is also utilized in hydrogen storage mech-
anisms, supercapacitors [13], biomedical fields including 
in vitro antialzheimer’s studies [14], and the food indus-
try [15].

The scientific community is very interested in the syn-
thesis of AgNPs because of their wide variety of applica-
tions [1, 16, 17]. AgNPs have demonstrated antibacterial 
efficacy against numerous infectious and harmful patho-
gens, including multidrug-resistant bacteria [2]. As a 
result of the improved antibacterial activity of Ag at the 
nanoscale, AgNPs are incorporated into numerous types 
of products, such as the medical and healthcare fields, 
clothing, cosmetics, dental products, catheters, dress-
ings, as well as surgical and food-handling instruments 
[18, 19]. In addition, AgNPs are applied as potential sen-
sors not only for heavy metals detection [20, 21] but also 
for various ecological sensing purposes. This is because 
AgNPs are simple, adaptable, and inexpensive materials 
[22].

A wide range of physical and chemical methods are 
employed in the production of nanoparticles (NPs). For 
the synthesis of silver nanoparticles (AgNPs), physi-
cal methods like lithography, irradiation, laser abla-
tion, evaporation, and condensation are commonly used 
[23–25]. These techniques might utilize thermal energy 
(physical vapor deposition), mechanical energy (ball mill-
ing) [26], electrical energy (electrical arc discharge), or 
light energy (laser ablation) [27]. Physical methods are 
advantageous due to the reduced toxicity of the reduc-
ing and stabilizing agents used, and they also produce 
AgNPs with small crystallite sizes and high purity. How-
ever, the downsides include substantial energy consump-
tion and potentially low yield rates [28, 29]. In contrast, 
several chemical techniques are also utilized for AgNPs 
synthesis, including chemical reduction [30], the sol–gel 
method [31], microemulsion techniques [32], photo-
chemical methods [33], electrochemical synthesis, and 
microwave-assisted synthesis [34]. While these chemical 
approaches may lead to high production costs and poten-
tially hazardous by-products, they are capable of produc-
ing NPs that are free from aggregation and have a high 
yield [35, 36].

Biological syntheses are favored today because they are 
secure, hygienic, affordable, simple to scale up and eco-
friendly [37]. It does not need external reducing, capping, 
and stabilizing agents, so that, it does not require harm-
ful or dangerous chemicals [38, 39]. The biological manu-
facturing of nanoparticles incorporates the adoption of 
multicellular and unicellular biological entities such as 
bacteria, actinomycetes, fungi, plants, viruses and yeasts 
[40, 41]. Recent studies have shown that the bio-synthesis 
of NPs using extracts from plants is an appealing substi-
tute for conventional chemical synthesis and the more 

difficult microbe culturing and isolation procedures [42, 
43], where the combinations of compounds contained in 
plant extract behave as reducing and stabilizing agents in 
the synthesis process. Although the complexity of their 
chemical composition, biological molecules have the 
advantage of being eco-friendly [44]. In plant extracts, 
bioactive alkaloids, phenolic acids, polyphenols, proteins, 
carbohydrates, and terpenoids are expected to be impor-
tant in reducing the metal ions and then stabilizing them 
Fig. 1 [45, 46].

Vachellia tortilis subsp. raddiana (Savi) Kyal. & 
Boatwr. (Syn: Acacia tortilis subsp. raddiana (Savi) Bre-
nan) (acacia raddiana) grows as wild flora in the Siwa 
Oasis and Aswan (Elephantine Island). By the end of the 
twenty-first century, Egypt’s oases will have an entirely 
different plant life thanks to the Toschka canal, which 
will redirect the Nile River from Lake Nasser (south of 
Aswan on the Nile Valley) to the Kharga Oasis and then 
the Farafra Oasis in the Western Desert. This project is 
expected to reclaim and cultivate about 500,000 acres 
[47]. The acacia raddiana plant offers benefits such as 
year-round availability and cost-effectiveness. Moreover, 
its leaf extract is rich in phenolic compounds, including 
flavonoids, tannins, alkaloids, and saponins [48].

In the preparation of nanoparticles utilizing plant 
extracts, the extracts are simply added to a metal salt 
solution at the optimal temperature. Within minutes, 
the reaction was completed. AgNPs and numerous other 
metals have been produced via this mechanism Fig.  2 
[49].

This research concentrated on detecting heavy met-
als using the synthesized AgNPs as sensors, owing to the 
toxic and detrimental effects these elements can have on 
the environment. The elements investigated include the 
following…

Mercury is a heavy metal that may be harmful to peo-
ple’s health and is a hazardous element in the environ-
ment. Mercury was ranked among the top ten substances 
or chemical groups that the World Health Organization 
assessed to be of the greatest public health concern [50, 
51]. Due to the presence of mercury in water and soil 
samples in large quantities, it accumulates in the ecologi-
cal food chain. As a result, both the human population 
and other living organisms are negatively impacted [52]. 
There are several sources of mercury as cinnabar rocks, 
which are formed through volcanic activity or the natural 
weathering of rock. It has up to 86% of its content mer-
cury which releases mercury in various forms to the envi-
ronment [53, 54]. As well, human activity through coal 
combustion, electrical power production and industrial 
waste disposal is the main source of mercury contamina-
tion in the environment [45]. Also, the biologically harm-
ful form of methyl mercury (MeHg) which accumulates 
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in the tissue of fish and birds and is released to the envi-
ronment by microorganisms that live in soil and water 
[55].

An essential mineral that is available in dietary supple-
ments and is a part of a balanced diet is copper (II) ion. 
However, excessive Cu2+ ion concentrations in humans 
can be hazardous and cause serious illnesses like dyslexia 
and hypoglycemia [56]. Numerous industries generate 
Cu2+ ions throughout their production methods, which 
can get into the food chain and build up in people [57, 
58].

Lead (Pb) is the most prevalent harmful heavy metal in 
the environment, that was found in our atmosphere [59]. 
Additionally, it is considered one of the five heavy met-
als that are commonly found in water, along with Hg, As, 
Cr, and Cd [60, 61]. Lead is still utilized in the creation 

of paint, and car batteries as well as in recovering lead 
metal electrodes [62, 63]. Therefore, the rate of paint 
deterioration and recycling of automotive batteries leads 
to increasing the amount of lead in both soil and water in 
particular places. Since lead is a hazardous metal, aquatic 
life is constantly at risk from its presence in the envi-
ronment. High blood levels of Pb2+ can seriously harm 
a human’s health, especially in young kids. Children’s 
blood serum contains abnormally high levels of Pb2+ in 
a certain region which exceeds the recommended value 
of 1.00 µg/L [64, 65]. Consequently, accurate Pb2+ deter-
mination in biological and environmental materials is 
crucial.

High quantities of cobalt in the human body lead to 
cobalt toxicity, which has catastrophic consequences. 
Cobalt and its salts are found in a variety of products, 

Fig. 1  Biological resources work as reducing and stabilizing agents in the metal nanomaterials synthesis
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including enamels, porcelain, acrylic paints on glass, 
grinding wheels, semiconductors, electroplating, 
hygrometers, and nuclear therapies [66]. Asthma, heart, 
thyroid, and liver issues are some of the negative symp-
toms of cobalt toxicity [67]. Moreover, it irritates the eyes 
and mucous membranes, making breathing through the 
nose extremely uncomfortable and frequently resulting in 
perforation of the nasal septum [68].

The mercury, copper, lead and cobalt contents of vari-
ous samples have been investigated via a variety of meth-
ods including cold vapor atomic absorption [69], cold 
vapor atomic fluorescence spectroscopy [70], atomic 
absorption spectrometry [71], inductively coupled 
plasma atomic emission spectrometry [72], electrother-
mal atomic absorption spectrometry, atomic fluorescence 
spectrometry [73], fluorescent probes  [74], inductively 
coupled plasma-mass spectrometry [75] and electro-
chemical detection [76]. Among them, the development 
of sensors to measure, monitor, and detect heavy met-
als in environmental samples is a crucial part of today’s 
technology.

Numerous studies are concentrating on the fascinat-
ing field of creating hydrophilic noble metal nanopar-
ticles capable of binding and coordinating with heavy 
metal ions. Among various noble metals, silver nano-
particles stand out as the most appropriate candidates 
for plasmonic analyte detection [77, 78]. The type of 
capping agent used significantly affects the nanomate-
rial’s hydrophilic or hydrophobic properties, as well as 
its tendency to aggregate or self-assemble [79]. Addi-
tionally, the presence of specific functional groups 
can enhance the particles’ interactions with nearby 

substances, thereby increasing their selectivity and sen-
sitivity towards these substances [80]. Surface function-
alization is a crucial strategy for enhancing selectivity 
and sensitivity in the detection and removal of pollut-
ants in water contaminated with heavy metals [81].

So, using AgNPs, colourimetric sensing of cobalt, 
copper, lead, and mercury is an efficient, fast, ecologi-
cally safe, and highly active technique [82].

This study presents a simple, quick, and eco-
friendly method for synthesizing silver nanoparticles 
(AgNPs)  using aqueous extracts of acacia raddiana 
leaves. It focuses on examining various parameters in 
the biosynthesis process to establish optimal synthe-
sis conditions. The study also investigates the poten-
tial of the synthesized AgNPs as colorimetric sensors 
for detecting cobalt, copper, lead, and mercury ions. 
This study stands apart from previous research in sev-
eral ways. Notably, acacia raddiana has not been previ-
ously employed in nanoparticle synthesis. The physical 
and chemical properties (such as size and shape) of 
the nanoparticles synthesized in this study are in line 
with standard benchmarks. Additionally, this study 
achieves a quicker response time for Cu2+, Hg2+, Co2+, 
and Pb2+ ions compared to earlier studies. Further-
more, the selection of the study area aligns with Egypt’s 
Vision 2030, specifically under the “Environmental 
Sustainability” section, which focuses on “the sustain-
able and integrative environment.” This is reflected in 
the study’s goal to treat water contaminated with heavy 
metals using simple methods, aiming to conserve water 
resources amidst global water scarcity issues.

Fig. 2  Mechanism of AgNPs synthesis using plant extract
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Materials and methods
Materials
All used chemicals were of analytical grade. Silver nitrate 
(AgNO3, PRATAP, UFC, PVT. LTD, India), concen-
trated nitric acid (HNO3 65%, DOP, Torkiye), Ammo-
nium hydroxide (NH4OH 30%, DOP, Torkiye), copper 
sulphate pentahydrate (Cu SO4. 5H2O, DOP, Torkiye), 
mercuric sulphate (HgSO4, S. d. FiNE-CHEM Ltd, India), 
nickel chloride hexahydrate (Ni Cl2. 6H2O, Oxford Lab. 
Reagent, India), cobalt nitrate hexahydrate (Co (NO3)2. 
6H2O, Loba Chemie PVT LTD, India), chromium nitrate 
nonahydrate (Cr (NO3)3. 9H2O, Loba Chemie PVT LTD, 
India), cadmium nitrate tetrahydrate (Cd (NO3)2. 4H2O, 
RIEDEL–DE HAEN AG SEELZE-HANNOVER) and 
lead nitrate (Pb (NO3)2, UFC, PVT. LTD, India).

Procedure
Plant extract preparation
Vachellia tortilis subsp. raddiana (Savi) Kyal. & Boatwr. 
(Syn: Acacia tortilis subsp. raddiana (Savi) Brenan) (aca-
cia raddiana) leaves were obtained from Elephantine 
Island in Aswan Government, Egypt, specified by Prof. 
Mohamed Gabr Sheded, Professor of Plant Ecology & 
Flora, Botany Department, Faculty of Science, Aswan 
University.

The plant leave is available in Aswan University Her-
barium (ASW. Herbarium) with NO. 11822. The samples 
were collected with the permission of Aswan University 
which is considered the main research body in the Aswan 
government.

Ten g of acacia raddiana leaves, as shown in Fig. 3, were 
initially rinsed with distilled water to remove impurities. 
The leaves were air-dried for two days and then ground 
into a powder. This powder was then combined with 
100  mL of distilled water and boiled for 25  min. After 
allowing the mixture to cool at room temperature, it was 
filtered using Whatman filter paper no. 41. The filtrate 
obtained was used as the plant extract.

Phytochemical analysis of acacia raddiana leaf extract
The acacia raddiana leaf extract was subjected to vari-
ous standard tests to detect different phytochemicals 
[83–85]. The methods used for these tests are described 
as follows:

•	 Tannins: A mixture of 50 mg of the extract in 5 mL 
of distilled water was heated in a water bath and then 
filtered. The addition of ferric chloride to the filtrate 
until it turned dark green confirmed the presence of 
tannins.

•	 Saponins: 0.2  g of the plant extract was boiled in 
5  mL of distilled water. The formation of persistent 
foam was an indication of saponins.

•	 Steroids: 20 mg of the extract was mixed with 1 mL 
of methanol, filtered, and then treated with 1 mL of 
concentrated H2SO4. A yellow-green fluorescence 
signified the presence of steroids.

•	 Terpenoids: 0.5  g of the extract was combined with 
2 mL of chloroform, followed by the gradual addition 
of concentrated H2SO4. A reddish-brown color at the 
interface indicated terpenoids.

•	 Flavonoids: 0.2  g of plant extract was dissolved in 
diluted NaOH, changing the solution from yellow to 
colorless upon gradual addition of HCl, a sign of fla-
vonoids.

•	 Anthraquinone: 0.5 g of the extract was mixed with 
5  mL of chloroform, shaken for 5  min, and filtered. 
Adding a 10% ammonia solution to the filtrate, and 
observing a change to pink, violet, or red in the 
ammonia layer indicated anthraquinone.

•	 Phenolic compounds: To 50 mg of the extract, 3 mL 
of a 10% lead acetate solution was added. The large 
white precipitate formed suggests that phenolic 
chemicals are present.

Fig. 3  Acacia raddiana plant
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Synthesis of AgNPs
Five mL of acacia raddiana leave extract was mixed with 
95  mL of a (5  mM) AgNO3 solution, and the obtained 
mixture was stirred at 70 °C for 2 h. As shown in Fig. 4, 
the colour of the solution changes from pale yellow to 
reddish brown. The resulting precipitate was separated 
by adding ethanol and decantation the clear solution, 
then dried at 50–80 °C.

Effect of pH  In this part of the study, 5 mL of acacia rad-
diana leaf extract and 95 mL of a 5 mM AgNO3 solution 
were mixed, and their pH was adjusted to a range between 
4 and 10 using 1 M HCl and 1 M NaOH. The resulting 
mixture was then stirred at a temperature of 70 °C for 2 h.

Effect of temperature  Here, the temperature of the mix-
ture, consisting of 5 mL of acacia raddiana leaf extract and 
95 mL of a 5 mM AgNO3 solution, was modified to 50, 
70, and 90 °C. This was done at the previously determined 
optimal pH, and the mixture was stirred for 2 h.

Effect of extract volume  The volume of the extract was 
varied from 1 to 10 mL, which was then combined with 
95  mL of a 5  mM AgNO3 solution at the optimum pH 
and temperature. Following this, the mixture was stirred 
for 2 h.

Effect of  stirring time  For this aspect, the synthesis of 
AgNPs was examined over stirring times of 0.5, 1, 2, 3, or 
4 h. This was conducted using 95 mL of a 5 mM AgNO3 
solution, maintaining the optimal pH, temperature, and 
extract volume settings.

Characterization techniques
The synthesized AgNPs were analyzed using a Bruker 
AXS D8 X-ray diffraction (XRD) system from Germany, 

employing Cu Kα radiation at a wavelength of 0.154 nm. 
Field Emission-Scanning Electron Microscopy (FE-SEM, 
QUANTAFEG250, The Netherlands) was utilized at a 
voltage of 20  kV. Additionally, a JEOL (JEM-HR-2100 
ELECTRON MICROSCOPE, USA) Transmittance Elec-
tron Microscope (TEM) was used for further examina-
tion. Fourier Transform-Infrared (FTIR) analysis was 
conducted using a JASCO 3600 (Tokyo, Japan), assisted 
by Agilent Technologies’ Cary 630, to measure spectral 
transmittance at room temperature. These spectral meas-
urements covered a range from 400–4000  cm−1 with a 
spectral resolution of 2 cm−1, aiming to identify and ana-
lyze the functional groups present in the plant extract. 
The particle size distribution and charge characteristics 
of the AgNPs were assessed using a Zeta sizer Ver. 7.03 
(temperature 25 °C, count rate 293.2 kcps, measurement 
position 2  mm). Furthermore, an EDAX APEX and a 
UV-1800 TOMOS spectrophotometer from China were 
employed at room temperature to determine the maxi-
mum wavelength (λ max.) of the synthesized AgNPs.

Study of sensing activity
Six different metal salts were used to test the green syn-
thesized AgN Ps’ ability to detect metal ions, i.e. [Cu 
SO4. 5H2O, HgSO4, Ni Cl2. 6H2O, Co (NO3)2. 6H2O, Cr 
(NO3)3. 9H2O, Pb (NO3)2 and Cd (NO3)2. 4H2O] were dis-
solved in distilled water to get a standard solution (0.1 M) 
for every salt for the colorimetric investigation. To a 1 mL 
light brown suspension of AgNPs (9.2 × 10–4 M), 2 mL of 
each metal salt solution (0.001 M) was added. The effect 
of pH was investigated at pH 2, 7 and 10 using a solution 
of 1  M NaOH or HNO3. At the optimum conditions of 
pH, the influence of dose was investigated in the range of 
25 to 500 ppm, the resulting suspensions were analyzed 
by spectrophotometry from 200—1000 nm. The concen-
tration effect of metal salt solution was also studied from 

Fig. 4  Acacia extract and silver nanoparticles formation
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1 × 10–7 to 1 × 10–2 M. Additionally, the effect of time was 
studied for each concentration from 0 to 15 min.

Real sample analysis
The synthesized AgNPs were applied to analyze a real 
wastewater sample. This sample was sourced from the 
Egyptian Company for Chemical Industries-KIMA, 
located in Aswan Governorate, Upper Egypt. The water 
was collected from the effluent pit (82 BS211) unit and 
then filtered through double-ring filter paper no. 102 to 
remove suspended particles before analysis. The detec-
tion of each metal was conducted using the AAS tech-
nique under optimal conditions.

Results and discussion
Phytochemical analysis of leaf extract
Table  1 presents the findings from the analysis of phy-
tochemical constituents in the leaf extract. The study 
revealed a high presence of saponins, alkaloids, and phe-
nolic compounds, along with moderate levels of tannins 
and flavonoids; however, anthraquinone and terpenoids 
were absent. These compounds are essential for convert-
ing silver ions into silver nanoparticles through various 
functional groups like hydroxyl, ketone, and aldehydes 
[86, 87]. They also serve as stabilizing agents.

Characterization of AgNPs
UV–Vis spectroscopy
AgNPs exhibit a surface plasmon resonance (SPR) peak 
at 400–500  nm, which may be utilized to confirm the 
formation of AgNPs using UV–Vis spectroscopy [88]. 
According to Fig.  5, the maximum absorbance peak in 
the absorption spectra of AgNPs is located at 423 nm.

The band gap of AgNPs can be estimated using the 
absorption spectra obtained from the UV–Vis spec-
trophotometer of the AgNPs suspended solution. The 
onset wavelength of absorption was determined by 

extrapolation of the baseline and the absorption edge as 
shown in Fig. 6. The band gap was calculated by Eq.  (1) 
[89]:

where h is Planck’s constant (6.626 × 10–34 Js), c is the 
speed of light (2.998 × 108 m/s) and � is the cutoff wave-
length of light × 10–9 m (510 nm). There is a conversion 
factor that should be used in calculations (Joule to eV 
where 1 eV = 1.63 × 10–19).

Another method for estimating the band gap is Tauc’s 
equation (Eq. 2) [90] as follows:

Here, depending on the nature of the transition, the 
plank constant, light frequency, absorption coefficient, 

(1)E =

hc

�

(2)(hυα)n = A(hυ − Eg )

Table 1  Phytochemical analysis of acacia raddiana leaf extract

(−) absent/(+) moderate presence/(++) abundant presence

Phytochemical examined Results

Phenolic compounds ++

anthraquinone −

Flavonoids +

Tannins +

Steroids −

Saponins ++

Alkaloids ++

Terpenoids −
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Fig. 5  UV–visible spectroscopy for silver nanoparticles synthesized 
using 95 mL (5 mM) of AgNO3 mixed with 5 mL of acacia extract 
at pH10 and stirring time 2 h

Fig. 6  Tauc’s plot of the absorption spectra of AgNPs
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proportional constant, energy gap, and power index are 
each represented by h, ʋ, α, A, Eg, respectively.

Tauc Eq. (2) converts to Eq. (3) as follows:

By substituting h and c with their values, the equation 
becomes:

According to Eq. (4), the absorption value in the UV–
vis spectrum is represented as (α), and the detection 
wavelength is λ. Plotting the (αhν)2 versus optical band 
gap energy, the Eg was estimated by extrapolating a 
straight line to the (αhν)2 = 0 axes [90–92]. Figure 6 illus-
trates that the band gap for AgNPs is 2.599 eV.

(3)hυ =

hc

�
=

1240

�

(4)
(

α
1240

�

)n

= (
1240

�
− Eg)

Zeta potential and size distribution
The synthesized AgNPs’ stability was evaluated using 
zeta potential measurements, with a higher positive or 
negative value suggesting greater nanoparticle stabil-
ity [93]. The distribution of size, both by intensity and 
mass, is depicted in Fig.  7a, b, presenting a Z-average 
(± SD) of 77.35 ± 50.4 (r. nm). The AgNPs exhibited 
a negative zeta potential of − 32.2  mV, as shown in 
Fig. 7c, indicative of high stability. Prior studies suggest 
that a strong negative zeta potential enhances repulsion 
between nanoparticles, promoting their stable disper-
sion and contributing to their colloidal quality [93]. 
Furthermore, the stability of AgNPs influences their 
size, with reduced stability leading to particle aggrega-
tion and an increase in particle size [94].

Fig. 7  a Size distribution by intensity, b size distribution by mass of the synthesized AgNPs and c zeta potential of the synthesized AgNPs
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FTIR spectroscopy for AgNO3, acacia raddiana leaves extract 
and AgNPs
The functional groups or biomolecules that are respon-
sible for the reduction of silver ions to AgNPs could be 
identified with the Fourier transform infrared (FTIR) 
spectroscopy. As depicted in Fig. 8. This can be achieved 
by comparing the intensity of AgNPs bands with stand-
ard AgNO3 and acacia values. The proportionate change 
in the band that was observed after silver nitrate treat-
ment is probably indicating that the functional groups 
participated in the formation of AgNPs [95].

FTIR analysis for acacia leaves illustrates that four main 
peaks were observed at 1057, 1655, 2927 and 3446 cm−1. 
The first peak (1) is related to C–N amine and the peak 
at 1655  cm−1 for the carbonyl groups in amide linkages 
or stretching vibration of C=O group neighbor to car-
bon–carbon double bonds (C=C) [96]. C–H stretching 
appeared at 2927 cm−1 indicating the presence of alkanes 
[97] and the vibration band at 3446 cm−1 corresponding 
to the O–H bond possibly arising from water.

The AgNO3 sample analysis shows peaks as follows, 
1357  cm−1 related to the N–O of the nitrate group and 
3476 cm−1 corresponding to the O–H bond possibly aris-
ing from water [98].

Comparing AgNPs to Acacia extract and AgNO3, only 
four peaks formed. The peak at 1655  cm−1 is related to 

the carbonyl groups (C=O) which formed in low inten-
sity compared with the same peak in acacia leaves which 
indicates the reaction takes place between AgNO3 and 
the extract. The second peak was observed at 2373 cm−1 
which was attributed to the amino or amide groups and a 
stretching vibration band formed at 3476 cm−1 for O–H 
of water. Finally, a peak was observed at 670 cm−1 for Ag 
which confirms the AgNPs formation. The peaks at 1357 
and 1773 cm−1 attributed to N–O and amino groups dis-
appeared compared with the FTIR analysis of AgNO3 
and AgNPs. The results indicate that a majority of the 
carbonyl, hydroxyl, amino, and amide groups present in 
the components of the plant extract attach to the surface 
of the synthesized AgNPs, functioning as capping agents 
to ensure stabilization. Based on these observations, it is 
noted that AgNPs demonstrate hydrophilic characteris-
tics [99, 100].

X‑ray diffraction analysis (XRD)
Effect of  pH  XRD patterns can be used to investigate 
the nature or crystalline composition of biosynthesized 
AgNPs. XRD examination of AgNPs biosynthesized at 
varying pH levels (4–10) using a 5 mM AgNO3 solution 
mixed with 5 mL of the extract, stirred for 2 h at a tem-
perature of 70 °C, is presented in Fig. 9.
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Fig. 8  FTIR of acacia leave, silver nitrate and the synthesized silver nanoparticles
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The AgNPs synthesized at pH8 and pH10 show only 
four peaks at 2θ 38.18, 44.25, 64.72, and 77.40° corre-
sponding to the AgNPs which agrees with the previous 
research [95, 101, 102]. The main peak at 2θ 38.18 for 
AgNPs prepared at pH10 is the highest intensity com-
pared with other synthesized samples. Two peaks at 
2θ 27.3 and 31.8° appeared for pH4 and pH6 samples 
may imply the presence of bio-organic molecules of the 
aqueous extract of the plant on the surface of AgNPs or 
due to the existence of Ag+ ion isn’t reduced [103, 104]. 
Therefore, the alkaline medium improved the ability of 
reduction and stabilizing agents in the leaf extract, on 
contrast, the acidic medium is unsuitable for AgNPs 
formation [105]. The synthesis of AgNPs under alka-
line pH conditions offers several benefits, including 
enhanced stability, a higher yield of nanoparticles, 
faster growth, and an improved reduction process 
[106]. In plant extracts, the OH− groups are crucial for 
their role as reducing and stabilizing agents in AgNPs 
synthesis. Therefore, a basic pH environment facilitates 
a greater participation of OH− groups in the reduction 
reaction, which in turn improves the efficiency of the 
reduction process [107].

The crystallite sizes were determined by Scherer 
Eq. (5) to be 20.20, 10.05, 20.24 and 30.72 nm for pH4, 
pH6, pH8 and pH10, respectively.

where D is crystallite size, k is constant (0.89 < k < 1), λ is 
the wavelength of the X-ray source (0.1541 nm), β is the 
full width at half maximum (FWHM) and θ is the diffrac-
tion angle that corresponding to the lattice plane.

Effect of reaction temperature  The impact of tempera-
ture on the synthesis process was examined at 50, 70, 
and 90  °C, maintaining a pH of 10 and using a combi-
nation of 5 mM AgNO3 solution with 5 mL of extract, 
stirred for 2 h.

As shown in Fig. 10, the sample synthesized at 70 °C 
shows a pure phase of AgNPs without any additional 
peaks of a second phase compared with 50 and 90  °C 
which exhibit a peak of second phase at 2θ = 32.2. The 
effect of temperature has little impact on the crystal-
lite size of the produced samples. The crystallite sizes 
were calculated to be 23.70, 21.75 and 23.60 nm for 50, 
70 and 90 °C, respectively. From these results, 70 °C is 
chosen as the optimum temperature because it gives 
the pure form of AgNPs with the smallest crystallite 
size. Previous research indicates that the ideal tempera-
ture for successful AgNPs synthesis falls between 60 
and 80 °C [108].

(5)D =

k�

βcosθ
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Fig. 9  Effect of pH on AgNPs synthesis using 95 mL (5 mM) AgNO3 mixed with 5 mL of acacia raddiana extract at 70 °C and stirring time 2 h
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Effect of extract volume  Due to the significant role that 
leaf extract plays in the Ag+ ion reduction, their volume 
up to a certain point is effective in the synthesis of AgNPs. 
For this study, varying volumes of leaf extract (1, 2.5, 5, 
7.5, and 10 mL) were tested at pH 10 with a 5 mM AgNO3 
solution, stirred for 2 h at 70 °C.

As illustrated in Fig.  11, the intensity of the AgNPs 
peaks increases from 1  mL to be maximum at 2.5  mL 
then gradually decreases to be minimum at 10 mL.

The peak intensity increased from 1 to 2.5 mL because 
the number of active molecules in the acacia raddiana 
leaf extract responsible for AgNO3 reduction increased. 
In contrast, the decrease in intensity peaks above 2.5 mL 
is due to the presence of extract components that have 
not been used in the reduction process [109]. The opti-
mal extract volume was determined to be 2.5 mL, align-
ing with past findings that suggest smaller volumes are 
more effective for nanoparticle synthesis [110].

Effect of  stirring time  Additionally, the stirring time’s 
effect was explored over a range from 0.5 to 4 h, using 
the same conditions of pH, AgNO3 concentration, 
extract volume, and temperature. The AgNPs synthe-
sized at 2  h show the sharpest main peak at 2θ 38.21° 
compared with the other samples. The crystallite sizes 

were determined to be 20.24, 35.34, 35.35, 24.40 and 
30.72 nm at 0.5, 1, 2, 3 and 4 h, respectively. Increasing 
the time from 0.5 to 2 h increases the main peak inten-
sity of the synthesized AgNPs, which decreases gradu-
ally at 3 and 4 h as shown in Fig. 12.

AgNPs synthesis mechanism
The synthesis of AgNPs is facilitated by the presence of 
various organic compounds in biological systems, capa-
ble of donating electrons for the conversion of Ag+ ions 
to Ag0. These compounds include carbohydrates, fats, 
proteins, enzymes, phenols, flavonoids, terpenoids, 
alkaloids, and others. The specific active components 
responsible for reducing silver ions vary based on the 
extract used. In hydrophytes, the dehydrogenation of 
acids (like ascorbic acid) and alcohols (such as catechol) 
plays a role. In mesophytes, transformations like keto 
to enol conversions (observed in compounds like cype-
raquinone, dietchequinone, and remirin) are involved. 
Similarly, xerophytes plants may utilize either or both 
of these pathways to provide the necessary electrons for 
AgNPs transformation, as illustrated in Fig. 13 [111].
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and stirring time 2 h



Page 12 of 34Ibrahim et al. BMC Chemistry            (2024) 18:7 

0 10 20 30 40 50 60 70 80

0

200

400

600

800
In

te
ns

ity

2 Theta

1 ml

2.5 ml

5 ml

7.5 ml

10 ml

Fig. 11  Effect of extract volume in synthesis of AgNPs Using 95 mL (5 mM) of AgNO3 at pH10, 70 °C and stirring time 2 h

0 10 20 30 40 50 60 70 80

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

In
te

ns
ity

2 Theta

0.5 h

1 h

2 h

3 h

4 h

Fig. 12  Effect of stirring time on the synthesis of silver nanoparticles using 95 mL (5 mM) of AgNO3 mixed with 2.5 mL of acacia raddiana at pH10, 
70 °C



Page 13 of 34Ibrahim et al. BMC Chemistry            (2024) 18:7 	

Scanning electron microscopy (SEM)
SEM Micrograph reveals the AgNPs morphology. The 
AgNPs synthesized at optimum conditions (pH10, 
70  °C, 2.5  mL of acacia leaf extract and stirring time 
2 h) were characterized by SEM micrograph as shown 
in Fig.  14a, b. It reveals that most of the synthesized 
nanoparticles are spherical with some irregular par-
ticles. Figure  14c displays the energy dispersive X-ray 

(EDX) spectrum, employed to assess the purity and 
composition of the green-synthesized AgNPs. The 
presence of AgNPs is confirmed by the prominent Ag 
peak in the EDX spectra at 3 keV [112]. Elemental anal-
ysis revealed a high silver content in the sample (73.86 
wt%). Additionally, the absence of an N signal from 
AgNO3 suggests that acacia raddiana leaves effectively 
reduced Ag+ to Ag0.

Fig. 13  Mechanism of AgNPs synthesis

Fig. 14  a, b SEM micrographs of synthesized AgNPs; c energy dispersive X-ray (EDX) spectrum of synthesized AgNPs
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Transmitting electron microscopy (TEM)
TEM analysis was conducted to examine the morphology 
and size of the AgNPs under optimal conditions (pH 10, 
70 °C, 2.5 mL of acacia leaf extract, and a stirring time of 
2 h), as shown in Fig. 15a–d. The AgNPs were observed 
to have both rod-like and spherical shapes with smooth 
surfaces. The size distribution, displayed in Fig. 15e, indi-
cates that the AgNPs range from 8 to 41  nm, predomi-
nantly clustering around 10–25 nm.

Table 2 gives a comparison of the silver nanoparticles 
synthesis condition produced using acacia raddiana leaf 
extract with the previous studies. It is clear that, the syn-
thesized AgNPs in this study give results that are close to 
the earlier research as shown in Table 2. The particle size 
of the synthesized AgNPs in the present study has a small 
particle size range (8–41 nm) compared to the previous 
studies.

Sensor activity of AgNPs
Silver nanoparticle–metal ions interaction
It is widely known that  prepared  AgNPs have a brown-
ish-yellow colour in an aqueous solution caused by the 
stimulating effect of surface plasmon resonance vibra-
tions (SPR band) in AgNPs [119]. To evaluate the sens-
ing abilities of the AgNPs to the metals Cu2+, Cd2+, Cr3+, 
Hg2+, Co2+ and Pb2+, 1 mL of 10−3 M metal ion was 
mixed with 1 mL of AgNPs suspension. As revealed in 
Figs.  16a–f and 17 as well as Table  3, upon addition of 
synthesized AgNPs to different solutions of metal ions, 
Cu2+ ions show a change in AgNPs colour from brown-
ish-yellow to pale yellow resulting in a change in the 
absorbance band of AgNPs from 423 nm to 352 nm as 
shown in Fig. 16a. Figure 16b and c illustrate that Cd2+, 
as well as Cr3+ ions, do not noticeably affect the biologi-
cally synthesized AgNPs. The fast response of AgNPs to 
Hg2+ was observed when the solution colour changed 
from brownish-yellow to colourless, indicating the high 
selectivity and specificity of AgNPs for Hg2+ as illustrated 
in Fig. 16d. In addition, Fig. 16e and f, Co2+and Pb2+ ions 
show a change in AgNPs colour from brownish-yellow to 
pale red for Co2+ and yellowish red for Pb2+ resulting in 
a change in the absorbance band of AgNPs from 423 nm 
to 438  and 429 nm for Co2+and Pb2+, respectively. The 
interaction of AgNPs with these metal ions is explained 
as follows:

	(i)	 The Cu2+ ion possesses a high standard reduction 
potential (Eo), indicating that copper ions can oxi-
dize Ag0. This reaction causes a color shift in the 
AgNPs from yellowish-brown to a very pale yellow, 
which is likely due to Ag NP aggregation [120].

	(ii)	 For the Hg2+ ion, the color disappearance in the 
silver nanoparticle solution is primarily attributed 

to a redox reaction involving Ag0 and Hg2+, which 
have standard potentials of 0.8  V (Ag+/Ag) and 
0.85  V (Hg2+/Hg) respectively [121]. Two mecha-
nisms are proposed for AgNPs’ interaction with 
mercury. Initially, the addition of Hg2+ leads to the 
coating of AgNPs’ external surface with Hg0, reduc-
ing absorbance and shifting the Surface Plasmon 
Resonance (SPR). Alternatively, the process could 
involve amalgam formation between AgNPs and 
Hg ions, a plausible reaction given the minor dif-
ference in electrochemical potentials between Hg2+ 
and AgNPs (0.8 V vs. 0.85 V), facilitating amalgam 
production and under-potential deposition [122, 
123].

	(iii)	 Regarding Co2+ ions, the introduction of Co (II) 
results in AgNP aggregation, changing their color 
from brownish-yellow to pale red. This change is 
attributed to covalent coordination bonds formed 
by catechol molecules (from the plant extract) on 
the AgNPs surface with Co2+ ions [124].

	(iv)	 In the case of Pb2+ ions, the notable decrease 
and shift in the AgNPs’ absorbance band post 
the addition of Pb (II) ion are likely due to AgNP 
aggregation. It is recognized that aggregation of 
nanoparticles leads to a shift in the Localized Sur-
face Plasmon Resonance (LSPR) peak absorbance 
towards a higher wavelength maximum [125].

  Effect of pH
For the six metals, the impact of pH was examined 
between the ranges of 2, 7, and 10 as shown in Fig.  18. 
Concerning mercury, the brownish-yellow colour of 
AgNPs disappeared at all studied pHs as illustrated in 
Fig. 18a. In the case of copper, Fig. 18b, a colour disap-
pearance was observed at pH 2 and 10 as well a very 
pale yellow colour was obtained at pH 7. Figure 18c and 
d demonstrate that cobalt and lead show a shift in the 
absorbance band at pH 7 however at pH 2 and 10, give 
negligible results. Regarding Cd2+ and Cr3+ there are no 
significant results observed with pH change as shown in 
Fig. 18e and f ).

Effect of AgNPs dose on Hg2+, Cu2+, Co2+ and Pb2+ detection
The effect of the AgNPs dose was studied for Hg2+, Cu2+, 
Co2+ and Pb2+ ions in the range 25, 50, 100, 250 and 
500 ppm as shown in Fig. 19. The results indicated that 
mercury at doses 25, 50, 100 and 250 ppm disappear the 
absorbance band of AgNPs but at 500  ppm no change 
occurs as illustrated in Fig.  19a. According to copper, 
Fig.  19b, the peak of the AgNPs at 423 nm disappeared 
at 50  ppm and shifted to a lower wavelength (from 
423 to 352 nm) at 25 ppm, but the other doses give the 
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Fig. 15  a–c TEM images of synthesized AgNPs, d selection electron diffraction pattern (SEAD) and e particle size distribution curve
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same curve with different absorbance values. For cobalt, 
Fig. 19c, doses 25, 50 and 100 ppm give a shift in the band 
(from 423 to 438  nm) with a difference in intensity of 
the absorbance band while, no change occurs in 250 and 
500 ppm. In the case of lead, Fig. 19d, 25 and 50 ppm give 
absorbance bands at 429 nm but the doses 100, 250 and 
500 give two absorbance bands at 413 and 429 nm.

Sensitivity and UV–vis studies
By checking the colour transformation of the system 
and measuring the UV-vis absorbance reading, 1 mL of 
various concentrations of an aqueous solution of metal 
ions (10-2 to 10-7 M) was mixed with 1 mL of 4.6×10-4 
M AgNPs solution at room temperature to evaluate the 
method’s sensitivity and determine the lowest detect-
able concentration of Hg2+, Cu2+, Co2+, and Pb2+ in an 
aqueous solution. The general trend for the four studied 
metal ions (Hg2+, Cu2+, Co2+, and Pb2+) is identical as 
illustrated from Figs 20, 21, 22, 23 where raising the con-
centration of metal ions lowers the absorbance peaks of 
AgNPs.   

From Fig. 20a and b, 1 × 10−2 and 1 × 10−3 M of mercury 
(II) transform the brownish yellow colour of AgNPs solu-
tion to colourless, whereas 1 × 10−4 M and 1 × 10−5 M, 
change the colour to pale yellow as indicated in Fig. 20c 
and d). On the other hand, several repeated experiments 
confirmed that 1 × 10−6 and 1 × 10−7 M of mercury (II) 
give little change of colour response to AgNPs as shown 
in Fig. 20e and f. The colour change of various concentra-
tions of Hg2+ ions with AgNPs are illustrated in Fig. 20g.

For copper, Fig.  21a, at 1 × 10-2 the brownish-yellow 
colour of AgNPs solution changed to colourless and the 
absorbance band of AgNPs disappeared. 1 × 10−3 and 
1 × 10−4 M changed the brownish yellow colour of AgNPs 
solution to pale yellow and a shift to a lower wavelength 

occurred from 423 to 352 nm as shown in Fig. 21b and 
c, whereas 1 × 10−5, 1 × 10−6 and 1 × 10−7 M, Fig. 20d–f, 
no colour alteration of AgNPs was observed. Figure 21g 
illustrates the colour of AgNPs with different concentra-
tions of copper ions.

On behalf of cobalt, as illustrated in Fig. 22a–d, 1 × 10-2 
M, 1 × 10−3 M, 1 × 10−4, and 1 × 10−5 altered the colour 
of AgNPs from brownish yellow to pale red, whereas 
1 × 10−6 and 1 × 10−7 M exhibit no variation in the AgNPs 
colour as shown in Fig. 22e and f. Figure 22g shows the 
colour change of AgNPs with different concentrations of 
cobalt.

In the case of lead, Fig.  23a–c, 1 × 10−2, 1 × 10−3 and 
1 × 10−4 M change the brownish yellow colour of AgNPs 
solution to very pale red, while the 1 × 10−5 M converts 
the colour to yellow as illustrated in Fig. 23d. 1 × 10−6 and 
1 × 10−7 M, Fig. 23e and f, maintain the colour of AgNPs. 
The colour change of AgNPs with lead is shown in Fig 
23g.

The influence of time on the colour of the metal-AgNPs 
was studied in the range of 0-15 min. The four studied 
metals show fast response to AgNPs where the colour 
change is recorded at just metal addition (0 min.) to 
AgNPs. After 3, 6, 9, 12, and 15 min, the colour becomes 
constant for Hg2+ and Cu2+ whereas the colour of Pb2+ 
and Co2+ changed from pale red to pale yellow.

Dynamic range
For a sensing device to be quantitatively useful, it must 
be demonstrated that its response changes depending on 
the analyst’s concentration. A linear correlation can be 
seen in the nanosensor calibration plots for Hg2+, Cu2+, 
Pb2+ and Co2+ ions at low concentration ranges as shown 
in Figs. 24, 25, 26, 27.

Table 2  Comparison between the current study and previous ones in the silver nanoparticle synthesis

Preparation method Reducing agent Conc. of AgNO3 Crystallite 
size, nm

pH Temp., oC Particle size, nm Λmax., nm Ref

Green synthesis Acacia raddiana leave 
extract (2.5 mL)

5 mM 35.5 pH10 70 8–41 (spherical) 423 Current study

Green synthesis leaf extract of Acer penta-
pomicum (1 mL)

1 mM 9.5 pH6-7 35–55 19–25 (spherical) 450 nm [113]

Green synthesis Acalypha hispida leaf 
extract (0.5 mL)

1.75 mM – – 50 20–50 (spherical) – [114]

Microwave-assisted 
green synthesis

Pineapple leaves waste 
(6 mL)

20 mM 19 – – 40–150 (hex-
agonal spherical 
shape)

400–450 [115]

Green synthesis Aloefera (15%) 5 mM – – 60 34–102 (spherical) 420–490 [116]

Green synthesis Boswellia ovalifoliolata 
(5 mL)

0.01 M 15 – – 455 [117]

Green synthesis Clitoria ternatea (5 mL) 0.1 M 20 pH9 – – 420 [118]
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Fig. 16  UV–Vis spectra of synthesized AgNPs Solution with a Cu2+, b Cd2+, c Cr3+, d Hg2+, e Co2+ and f Pb2+
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Equation  (6) was used to calculate the detection limit 
(LD) and quantification limit (LQ).

where Sb and m are the linear calibration curve’s slope 
and standard deviations, respectively. For the determi-
nations LD and LQ, the constant K is equal to 3 and 10, 
respectively [126]. The calculated LD and LQ for Hg2+, 
Cu2+, Pb2+ and Co2+ ions are described in Table 4.

Sandell’s pre-calculated sensitivity, Table 4, was described 
as the analyst concentration (in µg mL−1), which will 
absorb 0.001 in a path length cell 1 cm [126, 127] and which 
is expressed as g cm−2, calculated using Eq. (7):

The above equation can be interrupted as the following 
Eqs. (8, 9 and 10):

(6)LDor LQ =

kSb

m

(7)

S = n
M

ε
=

M.Wt × No of atoms

Molar absorpitivity of coloured species

(8)S =

10−3

εs

(9)εs =
ε

M.Wt of determinant
× 1000

where εs  is the specific absorptivity and its value in µg/
cm corresponds to the determinant in a cuvette with an 
optical length of 1 cm, ε is the molar absorptivity, C is the 
molar concentration of the determinant, and d is path 
length (1 cm) [128].

The absorbance signals of the AgNPs sensor with dif-
ferent concentrations of Hg2+ were investigated across 
a 10–2-10–7 M range. It was observed that Hg2+ showed 
linearity from 1 × 10–7–1 × 10–4  M (Fig.  24) with R2 
0.9814, LD 1.322 × 10–5, LQ 4.4 × 10–5 and Sandell’s sen-
sitivity 5.5 × 10–3 µg cm−2.

For Cu2+, Fig.  25, linearity was observed from 
1 × 10–7–1 × 10–4  M, with R2 0.9874, LD 1.37 × 10–7 
and LQ 4.5 × 10–7 and Sandell’s sensitivity 
1.05 × 10–5 µg cm−2.

Lead ion, Fig.  26, exhibited a linearity from 
1 × 10–7–1 × 10–5  M with R2 0.999, LD 1.63 × 10–5, LQ 
5.44 × 10–5 and Sandell’s sensitivity 1.46 × 10–3 µg cm−2.

In the case of cobalt, Fig. 27, exhibits linearity in the 
range 1 × 10–7–  1 × 10–4  M, where the R2 is 0.999, LD, 
1.34 × 10–4, LQ 4.486 × 10−4 M and Sandell’s sensitivity 
6.8 × 10–3 µg cm−2. For Hg2+ and Pb2+, 1 × 10–5 M is the 
concentration that saturate the AgNPs sensor, whereas 

(10)ε =

A

C .d

control2+Cu+2Cd3+Cr
2+Hg2+Co2+Pb

Fig. 17  Colour of metals under study with AgNPs

Table 3  Response of AgNPs as a sensor to heavy metals under investigation

Metals Metal Metal + AgNPs AgNPs

λ, nm Colour λ, nm Colour λ, nm Colour

Cu2+ 797 Pale blue 352 Pale yellow

Cd2+ 228 Colourless 423 Brownish yellow 423 Brownish-yellow

Cr3+ 411, 574 Dark violet 411, 574 Brownish yellow

Hg2+ 285 Colourless No band Colorless

Co2+ 304, 512 Red 438 Pale red

Pb2+ 285 Colourless 429 Yellowish red
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Fig. 18  UV–Vis spectra green synthesized AgNPs solution with a Hg2+, b Cu2+, c Co2+, d Pb2+, e Cd2+ and f Cr3+ at different pH
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for Cu2+ and Co2+ the concentration saturating the 
AgNPs sensor is 1 × 10–7 and 1 × 10–4 M, respectively.

Matrix effect
To examine the impact of the metals on each other, mix-
tures of metal–metal solutions were prepared by mixing 
1 × 10−3 M of a given metal ion with 1 × 10–3 M of Cu2+, 
Cd2+, Co2+, Cr3+, Hg2+, Ni2+ or Pb2+. The total volume in 
all cases was adjusted to a graduated volume.

For Hg2+, Fig.  28, it can be detected that no interfer-
ence occurs with all metals under study showing that 
the test technique has a very high level of sensitivity and 
selectivity for Hg2+

Figure  29 shows the resulting data whenever Cu2+ is 
the given ion. It can be detected that only in the case of 
Cu2+/Ni2+ and Cu2+/Cd2+/Ni2+ mixtures no interference 
occurred.

Fig. 19  Effect of dose of AgNPs on a Hg2+, b Cu2+, c Co2+, and d Pb2+ detection
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Fig. 20  UV–Vis spectra of synthesized AgNPs in the presence of a 10–2, b 10–3, c 10–4, d 10–5, e 10–6 and f 10–7 M of Hg2+with time, Respectively 
and g the change of sensor colour with Hg2+ concentration
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Fig. 21  UV–Vis spectra of synthesized AgNPs in the presence of a 10–2, b 10–3, c 10–4, d 10–5, e 10–6 and f 10–7 M of Cu2+ with time, respectively 
and g the change of sensor colour with Cu2+ concentration
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Fig. 22  UV–Vis spectra of synthesized AgNPs in the presence of a 10–2, b 10–3, c 10–4, d 10–5, e 10–6 and f 10–7 M of Co2+with time, respectively 
and g the change of sensor colour with Co2+ concentration
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Fig. 23  UV–Vis spectra of synthesized AgNPs in the presence of a 10–2, b 10–3, c 10–4, d 10–5, e 10–6 and f 10–7 M of Pb2+with time, respectively 
and g the change of sensor colour with Pb2+ concentration
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Fig. 26  a, b Linear range of Pb2+ ion
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Concerning Pb2+, Fig. 30, it can be detected that only in 
the case of Pb2+/Co2+ mixtures no interference occurred.

Figure 31 represents the resulting data of Co2+ ions. 
It can be observed that all metals under study cause 
interference.

Comparison with previous literature
Table 5 presents a comparison of the current study with 
existing literature regarding the efficiency and capabil-
ity of the synthesized AgNPs in detecting Hg2+, Pb2+, 

Fig. 27  a, b Linear range of Co2+ ion

Table 4  Calculated values of LD, LQ and Sandell’s sensitivity

Hg2+ Cu2+ Pb2+ Co2+

LD, M 1.322 × 10–5 1.37 × 10–7 1.63 × 10–5 1.34 × 10–4

LQ, M 4.4 × 10–5 4.5 × 10–7 5.44 × 10–5 4.486 × 10–4

Sandell’s sensi-
tivity, µg cm−2

5.5 × 10–3 1.05 × 10–5 1.46 × 10–3 6.8 × 10–3
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Fig. 28  Sensitivity of AgNPs toward mercury with other metals under study
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Fig. 29  Sensitivity of AgNPs toward copper with other metals under study
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Fig. 30  Sensitivity of AgNPs toward cobalt with other metals under study
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Co2+, and Cu2+ ions. The results show that the AgNPs 
synthesized in this study, without any modifications, 
offer a quicker response time for these four metal ions 
than those reported in other studies. Additionally, they 
exhibit relatively low detection limits, demonstrating 
the sensitivity of the prepared AgNPs towards Hg2+, 
Cu2+, Co2+, and Pb2+ ions. However, interference was 
observed in the detection of copper, lead, and cobalt 
ions in the presence of other metals, which represents a 
limitation of this study.

Real sample analysis
Table  6 shows the efficiency of the AgNPs as colouring 
sensor for the heavy metals under study in wastewater 
samples. The percentage efficiency of AgNPs toward Pb 
is 42.43%, Cu is 100.72% and Co is 42.33%. While mer-
cury isn’t found in the sample.

Conclusion
The acacia raddiana leaf extract is rich in second-
ary chemical constituents (phenols, tannins, alkaloids, 
saponins and flavonoids). These chemicals behave 
as reducing and stabilizing reagents for synthesized 

AgNPs. The influence of leave extract volume, pH, tem-
perature and time on the interaction response and mor-
phology of the synthesized AgNPs are examined. The 
AgNPs synthesized at pH10, for 2 h with extract volume 
2.5 mL and temperature 70 °C give sharp peaks and are 
more crystalline than the other samples. The AgNPs 
surface acquired a negative charge according to the zeta 
potential results which was found to be − 32 mM. The 
AgNPs have mostly a spherical structure with particle 
sizes between 8 and 41 nm. The synthesized AgNPs can 
be utilized to detect mercury, copper, lead and cobalt 
with LD and LQ 1.322 × 10–5  M and 4.4 × 10–5  M for 
mercury, 1.37 × 10–7  M and 4.5 × 10–7  M for copper, 
1.63 × 10–5 M, 5.44 × 10–5 M for lead and 1.34 × 10–4 M, 
4.486 × 10–4  M for cobalt, respectively. Hg2+ can be 
detected in the presence of all metals under study 
individually or together. Co2+ cannot be detected in 
the presence of all metals under study individually 
or together. Cu2+ can be detected in the presence of 
Ni2+ individual and Cd2+ + Ni2+ together. Pb2+ can be 
detected in the presence of Co2+ only. Future stud-
ies should explore additional modifications to AgNPs 
to enhance the sensitivity of colorimetric detection of 
heavy metals and to reduce potential interferences.

400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
b
s
o
rb

a
n
c
e

Wavelength, nm

 AgNPs
 Pb2+ +Co2+

 Pb2++ Cd2+

 Pb2+ +Ni2+

 Pb2+ +Hg2+

 Pb2+ +Cu2+

 Pb2+ +Cr3+

400 600 800 1000
0

1

2

3

4

A
b
s
o
rb

a
n
c
e

Wavelength, nm

 AgNPs
 Pb2+ +Hg2+ +Cu2+

 Pb2+ +Hg2+ +Cd2+

 Pb2+ +Hg2+ +Co2+

 Pb2+ +Hg2+ +Ni2+

 Pb2+ +Hg2+ +Cr3+

 Pb2+ +Cd2+ +Co2+

 Pb2+ +Cd2+ +Ni2+

 Pb2+ +Co2+ +Ni2+

 Pb2+ +Cu2+ +Cd2+

 Pb2+ +Cu2+ +Co2+

 Pb2+ +Cu2+ +Ni2+

 Pb2+ +Cu2++Cr3+

 Pb2+ +Co2+ +Cr3+

 Pb2+ +Ni2+ +Cr3+

 Pb2+ +Cd2+ +Cr3+

Fig. 31  Sensitivity of AgNPs toward lead with other metals under study
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Table 5  Analytical performance of the AgNPs sensor with previously reported sensors for the Hg2+, Pb2+, Co2+ and Cu2+

Element LD LQ R2 Conc. range Colorimetric 
sensor

Response time Matrix effect Refs.

Hg2+ 1.322 × 10−5 M 4.4 × 10−5 M 0.9814 10–2–10−7 M AgNPs with-
out modification

Just added No interference Current study

8 × 10–7 M – 0.9956 1-70 µM AgNPs with-
out modification

5 min No interferences [126]

28 ppm 85 ppm 0.965 7–63 ppm AgNPs with-
out modification

1 min No interferences [129]

15 ppb – 0.995 10–1000 ppb AgNPs with-
out modification

5 min – [130]

0.5 mg/L 1.69 mg/L 0.989 10–80 mg/L AgNPs with-
out modification

30 s – [131]

1.8 nmol L-1 – – 0.005 to 41 μmol L−1 Boronic acid func-
tionalized
MoS2 quantum dot

– – [132]

Pb2+ 1.63 × 10–5 5.44 × 10–5 0.999 10–2–10–7 M AgNPs with-
out modification

Just added only in the case 
of Pb2+/Co2+ mix-
tures, no interfer-
ence occurred

Current study

2.0 × 10−7 M – 0.9959 1–90 μM AgNPs Without 
modification

5 min No interferences [126]

0.03 × 10−2 µg/L – 0.97 0.10–10 µg/L Modify (silver 
(Ag)–gold (Au) alloy 
nanoparticle (NP)–
aptamer-modified 
glassy carbon elec-
trode (GCE))

– No interferences 
except with Cd2+

[133]

0.056 µmol L−1 – – 0.19–1.29 µmol L−1 Modify (citrate-
capped Ag nano-
particles)

– – [134]

0.1 μM – 0.996 0.5—25 μM AgNPs with-
out modification

– – [135]

0.05 nM – – 0.01-100 µM GR-5 DNAzyme 
based Pb ion strip 
biosensor

– – [136]

Co2+ 1.34 × 10–4 4.486 × 10–4 0.999 10–2-10−7 M AgNPs with-
out modification

Just added Cause interferences Current study

0.1 μM 0.3 μM 0.9984 0.1–5 μM Povidone capped 
silver nanoparticles

4–5 min – [137]

7.0
μM

– 0.99431 05–100
μM

Modify triazole–car-
boxyl agnps

5 min – [138]

0.16 0.55 mM – 1–30 mM Lignin-functional-
ized silver nanopar-
ticles

– – [139]

0.68 µM – 0.9957 1.7–20
µM

AgGSH silver nano-
particle-glutathione 
with cysteine 
modify

– – [140]

Cu2+ 1.37 × 10–7 M 4.5 × 10–7 M 0.9874 10–2–10–7 M AgNPs with-
out modification

Just added only in the case 
of Cu2+/Ni2+ 
and Cu2+/Cd2+/Ni2+ 
mixtures no inter-
ference occurred

Current study

1.7 μM – 0.9795 2.5 µM–1 mM Carrageenan-silver 
nanoparticles

3 min – [141]

0.16 µM – 0.973 0.08–1.44 µM Casein peptide-
functionalized silver 
nanoparticles

– – [142]
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