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Abstract 

Undecaprenyl Pyrophosphate Synthase (UPPS) is a vital target enzyme in the early stages of bacterial cell wall 
biosynthesis. UPPS inhibitors have antibacterial activity against resistant strains such as MRSA and VRE. In this 
study, we used several consecutive computer-based protocols to identify novel UPPS inhibitors. The 3D QSAR 
pharmacophore model generation (HypoGen algorithm) protocol was used to generate a valid predictive 
pharmacophore model using a set of UPPS inhibitors with known reported activity. The developed model consists 
of four pharmacophoric features: one hydrogen bond acceptor, two hydrophobic, and one aromatic ring. It had 
a correlation coefficient of 0.86 and a null cost difference of 191.39, reflecting its high predictive power. Hypo1 
was proven to be statistically significant using Fischer’s randomization at a 95% confidence level. The validated 
pharmacophore model was used for the virtual screening of several databases. The resulting hits were filtered 
using SMART and Lipinski filters. The hits were docked into the binding site of the UPPS protein, affording 70 hits 
with higher docking affinities than the reference compound (6TC, − 21.17 kcal/mol). The top five hits were selected 
through extensive docking analysis and visual inspection based on docking affinities, fit values, and key residue 
interactions with the UPPS receptor. Moreover, molecular dynamic simulations of the top hits were performed 
to confirm the stability of the protein–ligand complexes, yielding five promising novel UPPS inhibitors.
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Graphical Abstract

Introduction
Due to the threat of emerging antibiotic resistance, 
the quest for new antibacterial agents remains an 
essential endeavor in drug discovery. Many antibacterial 
agents, such as methicillin and vancomycin, display 
a bactericidal effect by inhibiting bacterial cell wall 
synthesis. However, Methicillin-Resistant Staphylococcus 
Aureus (MRSA) and Vancomycin-Resistant Enterococci 
(VRE) are emerging and pose a major threat [1–4]. One 
strategy for overcoming bacterial resistance to most cell 
wall synthesis-inhibiting antibiotics is to utilize inhibitors 

that target different enzymes within the same pathway 
as current antibiotics [5]. This approach can help avoid 
cross-resistance development, create a synergistic effect, 
and possibly restore sensitivity through combination 
therapy [5–7].

One such enzyme is Undecaprenyl Pyrophosphate Syn-
thase (UPPS), an integral target enzyme in the early steps 
of bacterial cell wall biosynthesis. Undecaprenyl Pyroph-
osphate Synthase is part of the family of cis-prenyltrans-
ferases [8]. UPPS catalyzes the continuous condensation 
of eight molecules of Isopentenyl Pyrophosphate (IPP) 
with Farnesyl Pyrophosphate (FPP), producing C55 

Fig. 1 Biosynthetic pathway of peptidoglycan bacterial cell wall including sites of action of UPPS inhibitors, methicillin, and vancomycin
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Undecaprenyl Pyrophosphate (UPP) [9]. Then C55-iso-
prenol pyrophosphate phosphatase removes the termi-
nal phosphate of UPP, forming Undecaprenyl Phosphate 
(UP) (Fig. 1) [5], an imperative anchor for the synthesis of 
lipid I and lipid II and the assembly of the peptidoglycan 
cell wall [5, 10–13]. UPPS is an attractive target because 
it is essential for bacterial cell growth while absent from 
humans [14]. Nonetheless, UPPS inhibitors possess anti-
bacterial activity on resistant strains such as MRSA and 
VRE when used alone or in combination with current 
agents [15–18].

While UPPS is a validated target, no selective inhibitors 
have been reported in the literature. In  vitro activity 
and bioavailability of the substrate analogs reported 
were modest, highlighting the need for novel, more 
effective antibacterial agents that target UPPS [19–
22]. Most small-molecule UPPS inhibitors are highly 
hydrophobic compounds containing ionic groups 
such as bisphosphonates and high molecular weight 
spirohexalines [16]. Most of these compounds are poorly 
absorbed and exhibit modest in  vitro activity, making 
their selectivity and suitability for antimicrobial drug 
design questionable [22–24]. This research aims to 
identify novel, more effective antibacterial agents  that 
target UPPS.

Various crystal structures of the UPPS protein have 
been reported, demonstrating its flexibility in its native, 
substrate-bound, and product-bound states [25–27]. 
A druggable active site and an essential role in the cell 
wall synthesis of many pathogenic bacteria make UPPS 
an attractive target for new antibacterial drugs [28, 29]. 
Consequently, virtual and high-throughput screenings 
were conducted to find inhibitors of UPPS that are not 
bisphosphonates and possess antimicrobial activities 
against clinically relevant strains [21, 22, 27, 30–32]. 
Most of these computer-aided drug design approaches 
towards discovering new non-bisphosphonates UPPS 
inhibitors relied solely on in silico target-based virtual 
screening of large libraries of compounds without using 
filters to ensure the drug likeability of the hit compounds 
[5, 14, 15, 33, 34]. While these approaches yielded the 
discovery of some UPPS inhibitors, they hardly provide 
any structure–activity relationships [33].

Here, we report using consecutive computer-
aided drug design protocols, including 3D QSAR 
pharmacophore generation, in silico virtual screening, 
docking, and molecular dynamics to identify novel 
potential UPPS inhibitors [35]. First, we performed 
ligand-based 3D QSAR pharmacophore generation using 
a data set library of 25 UPPS inhibitors synthesized and 
reported by Novartis. The ligands belong to a dataset 
of tetramic and tetronic acids with  IC50 in the 100-nM 
range and dihydropyridines with  IC50 down to 40  nM, 

all with antibacterial activity against Gram-positive 
bacteria [36]. The HypoGen algorithm summarized the 
structural features of these ligands to generate a valid 
predictive pharmacophore model using the Discovery 
Studio V4.1 software package [37]. The correlation 
coefficient between the predicted and experimental 
activities was 0.8699 for the training set and 0.8177 for 
the test set, thus indicating good predictive ability. The 
chosen pharmacophore model (Hypo 1) was further 
validated using cost analysis and Fischer’s randomization. 
The valid pharmacophore model was used to virtually 
screen several databases, such as FDA-approved 
molecules from the ZINC15 library, Drug-Like Diverse, 
Mini Maybridge, and scPDB. Subsequent filtration was 
done to assess the drug-likeability of the hits. Three 
conditions were applied: (a) Lipinski’s Rules of Five, 
which assessed the drug-likeability of the compounds, (b) 
SMART filtration, which eliminated unneeded functional 
groups and (c) Filtration criteria limited to fit values 
above 6.5. The virtual screening hits were docked via the 
CDOCKER protocol into the binding site of the crystal 
structure of Streptococcus pneumoniae Undecaprenyl 
Pyrophosphate Synthase (UPPS) (PDB ID: 5KH5) [38] 
in complex with the pyrazole inhibitor N-(3-amino-3-
isopropyl)-5-(benzo[b]thiophen-6-yl)-1-benzyl-N-(4-
isopropoxy phenyl)-1H-pyrazole-4-carboxamide (6TC). 
After analyzing the docking scores and pharmacophore 
fit values, potential active candidates that target UPPS 
were identified. Molecular dynamic simulations of the 
top hit-protein complexes were performed to validate the 
docking results and confirm the stability of the protein–
ligand complexes.

Materials and methods
Ligand-based and structure-based computer-aided 
drug design are used to discover new drug leads by 
employing ligands with known activity to help develop 
new biologically active leads for a specific target. The 
traditional ways of developing new drugs are inefficient 
in cost, time, and effort. In contrast, computer-aided 
drug design allows us to make better-informed decisions, 
hence exhausting fewer resources [39–41].

In this endeavor, the 3D QSAR Pharmacophore 
generation protocol (DS) was used to develop new 
antibacterial leads targeting the UPPS enzyme. To 
generate the primary data set for the 3D QSAR 
pharmacophore modeling study, 34 molecules with an 
excellent range of inhibitory activity on UPPS enzyme 
were extracted from previously published literature 
[36, 42]. The experimental inhibitory activity of all the 
34 ligands included in the datasets was acquired via the 
same bioassays on streptococcal UPPS enzyme with  IC50 
values ranging from 0.04 to 58 μM.
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The dataset was divided into training and test 
sets based on the following criteria to achieve a 
significant pharmacophore model: (1) The dataset 
was categorized into four activity levels: highly active 
 (IC50 ≤ 0.1  μM), active  (IC50: 0.1–1.0  μM), moderately 
active  (IC50: 1.0–10.0 μM), and inactive  (IC50 > 10) [43]. 
(2) A diverse distribution of the four biological activity 
levels was ensured in both training and test sets, with 
the training test including a maximum number of 
highly active and active compounds and some of the 
moderately active and inactive compounds while the 
remaining compounds were assigned to the test set for 
validation [44]. (3) Both sets include diverse chemical 
derivatizations of dihydropyridines, tetramic, and 
tetronic acids [43].

Finally, after following the abovementioned criteria, 
25 diversified ligands were considered in the train-
ing  set  (Fig.  2), with experimental  IC50 values rang-
ing from 0.04 to 35  μM [36]. Nine compounds were 
assigned to the test set (Fig. 3), with experimental  IC50 
values ranging from 0.5 to 58 μM [36, 42].

Compounds preparation
The two-dimensional (2D) structures of the datasets 
were drawn using ChemDraw Ultra and subsequently 
converted into their three-dimensional (3D) form 
by Discovery Studio 4.1 (DS). The datasets were 
prepared using the prepare ligands protocol of 
(DS). This protocol prepares ligands for input into 
other protocols, executing tasks such as removing 
duplicates, enumerating isomers and tautomers, and 
generating 3D conformations. The prepare ligand 
protocol provides reasonable starting ligand structures 
to achieve good results in the subsequent protocol. 
Additionally, it enumerates valid ionization states and 
compounds with undesirable properties. This protocol 
accomplishes these tasks by performing the following 
steps: (1) Generating canonical tautomers, (2) Keeping 
only the largest fragments, (3) Setting standard 
formal charges on common functional groups, (4) 
Kekulizing molecules, which is assigning double bonds 
to the molecular graph using DS as a guide before 
assigning virtual hydrogen, (5) Fixing bad valences, (6) 
Generating a reasonable 3D conformation.

Furthermore, the generate conformations protocol 
in DS was utilized to create optimized conformations 
for the training set and test set. The CHARMM 
force field was used to achieve energy-minimized 
conformations of each compound in the training and 
test sets. Throughout the conformation’s generation 
process, parameters such as the maximum number of 
conformers were set to 255, and the energy threshold 

was set to 20  kcal/mol. These conformers were 
used to generate pharmacophore hypotheses, fit the 
ligands  into the model hypothesis, and predict the 
activity of newly investigated compounds [45, 46].

Pharmacophore model generation
3D QSAR pharmacophore modeling is a ligand-based 
computer-aided drug design (CADD) method. The 
protocol utilizes the chemical properties of a dataset of 
diverse ligands with a broad range of biological activity 
on a specific target enzyme. This is done to design a valid 
predictive pharmacophore that reflects the necessary 
chemical features responsible for biological activity. The 
generated pharmacophore can be used to identify new 
candidates and predict their biological activity [47–49].

In this endeavor, a training set of 25 known active 
UPPS inhibitors with a wide range of activity represented 
in  IC50 is used to create a pharmacophore model. The 
training set was subjected to the feature mapping 
protocol in DS to identify distinct chemical features 
present in the ligands. The features revealed were 
Hydrogen Bond Acceptor (HBA), Hydrogen Bond Donor 
(HBD), Hydrophobic (HYD), and Ring Aromatic (RA). 
The four features identified were chosen for the 3D 
QSAR pharmacophore generation protocol. The  IC50 
was selected to be the active property, and the energy 
threshold was retained at 20  kcal/mol throughout the 
protocol run. The uncertainty value was set to 1.5. This 
value represents a ratio of the reported value to the 
minimum and maximum values. Setting the uncertainty 
value to 1.5 entails that the model can acclimate 
differences in the experimental  IC50 values and predict 
 IC50 up to 1.5 times [44]. All the other parameters were 
left to default.

The HypoGen algorithm utilized in the 3D QSAR 
pharmacophore generation protocol of DS interpreted 
the common chemical features related to low or high 
biological activity in the training set. The pharmacophore 
model utilized in this work was chosen out of 10 
generated hypotheses according to possessing the highest 
correlation coefficient, lowest total cost, and Root Mean 
Square (RMS).

Pharmacophore model validation
The pharmacophore model was validated via three 
evident means: test set analysis, cost analysis, and 
Fischer’s randomization.

In test set analysis, the ligand pharmacophore mapping 
protocol in DS overlaps the selected pharmacophore with 
a test of ligands with varying experimental activity, thus 
providing estimated activities of the test set (Table  4). 
The closer the estimated activities are to the experimental 
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Fig. 2 Training set ligands along with their  IC50 values ranging from 0.04 to 35 μM
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activities of the test set, the more predictive the 
pharmacophore is. An acceptable correlation coefficient 
with a cross-validation 95% confidence level should be 
attained to consider a pharmacophore model predictive 
[44, 50]

The HYPOGEN algorithm in the Discovery Studio 
software calculates various cost functions and 
correlation values that can be interpreted to validate a 
given pharmacophore. The fixed cost assumes a simple 
hypothesis model that seamlessly fits all the dataset 
molecules; hence, it is the lowest cost [51]. The fixed cost 
value for the generated hypothesis is 74.40. The null cost, 
on the other hand, is equivalent to the highest possible 
error cost [52]. The null cost for the generated hypotheses 
is 332.267. The total cost is calculated independently 
for each pharmacophore hypothesis. It is the sum of 
weight, error, and fixed costs [44]. The total costs for the 
ten generated hypotheses ranged from 140 to 197. To 
consider a pharmacophore model robust, the total cost 
value of the evaluated pharmacophore should be close 
to the fixed cost and distant from the null cost. The best 
model was selected based on the null cost distance; a null 
cost distance value of more than 60 indicates a significant 
correlation and denotes that the model is > 90% accurate 
in the prediction of activity [53]

Fischer’s randomization validation technique allows us 
to evaluate the statistical significance of the hypotheses 
generated by the HypoGen algorithm via statistical 
validation [44]. A 95% confidence level was selected, 
and the training set ligands were randomly given activity 

values and allowed to generate 19 random spreadsheets 
(random hypotheses). For the pharmacophore generation 
process to be valid, the ten pharmacophore hypotheses 
generated by HypoGen should have superior total cost 
values and statistically significant correlations compared 
to the 19 random spreadsheets created by Fischer’s 
randomization [54, 55].

Virtual screening
Virtual screening (VS) is a drug discovery strategy that 
searches libraries of small molecules for structures 
with the highest probability of binding to a drug target 
[56]. Based on the generated pharmacophore, a virtual 
screening was initiated to identify structurally novel and 
potentially active UPPS inhibitors from diverse chemical 
databases. Hypo 1 was allowed to screen 32387 molecules 
belonging to FDA-approved molecules from the ZINC15 
[57], drug-like Diverse, MiniMaybridge, and scPDB 
libraries. Hit molecules should fit into  all the chemical 
features  of Hypo 1. The Search 3D database protocol 
was utilized with the search option set to best/flexible 
to obtain promising hit  molecules from the database. 
Compounds with high fit values (close to the fit value of 
the reference 6TC) were subjected to various constraints 
to refine the hits further. Constraints like Lipinski’s and 
SMART filters were applied to ensure the drug-likeability 
of the selected hits. Lipinski’s rule of five is an important 
filter that considers the molecules’ pharmacokinetics to 
ensure that the chosen molecules can be absorbed orally 
and have drug-like molecular properties [58, 59]. On the 

Fig. 3 Test set ligands along with their  IC50 values ranging from 0.5 μM to 58 μM
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other hand, the SMART filter removes molecules with 
toxic functional groups like sulfonyl halide, sulfonate 
ester, cyanide, peroxide, and other functional groups that 
decrease the molecule’s drug-likeability [60, 61]. Finally, 
the filtered hits were docked onto the binding site of the 
target UPPS protein (PDB ID: 5KH5) [38], and docking 
scores, along with interactions, were used to identify the 
top hits.

Molecular docking studies
All the molecular docking studies done were based 
on the crystal structure of Streptococcus pneumoniae 
Undecaprenyl pyrophosphate Synthase (UPPS) (PDB 
ID: 5KH5) [38] in complex with the pyrazole inhibitor 
6TC as the co-crystallized ligand. According to the 
literature and upon studying the crystal structure of 
UPPS (PDB ID: 5KH5) in complexes with the inhibitor, 
it is established that the active site of the protein has 
two neighboring pockets where the natural substrates 
FPP and IPP bind. The complex of UPPS bound to the 
natural substrate FPP (PDB ID: 5KH4) [38] shows the 
pyrophosphate directly interacts with the amino acids 
Arg41 and Arg79, and the farnesyl tail binds into a long, 
deep cavity lined by several hydrophobic side chains. In 
the crystal structure of UPPS in complex with inhibitor 
(6TC) (PDB ID: 5KH5), the inhibitor 6TC binds near the 
base of the hydrophobic pocket of the FPP binding site. 
Most of the interactions made by 6TC are hydrophobic, 
along with two pi-stacking interactions between the 
benzyl-isopropyl ether moiety and Phe143 and between 
the benzothiophene moiety and both Phe94 and Met49 
[38].

Molecular docking was done via the CDOCKER 
protocol DS. The CDOCKER protocol allows us to 
simulate the docking of a ligand into the target’s binding 
site and utilizes several scoring functions to assess 
the docked poses [62]. A CHARMM-based molecular 
dynamics (MD) is used to dock ligands into the target 
protein’s active site, and high-temperature molecular 
dynamics generate random ligand conformers and 
translate them into the binding site [63]. The ligand 
conformers are developed through random rigid-body 
rotations followed by simulated annealing [64]. It has 
been demonstrated that the CHARMM-based C-docker 
protocol yields highly accurate docked poses [65]. The 
protein preparation tool was used to correct common 
problems in the protein structure by adding missing 
loops and hydrogens and excluding alternate conformers. 
The binding site was then identified by using the define 
and edit binding site tool, which resulted in a sphere of 
8.2 Å from the geometric centroid of the co-crystallized 
ligand 6TC and the binding site atomic coordinates were 
− 3.649150, 9.898302, and − 6.074069.

The ligand preparation tool prepared the selected 
hits from the pharmacophore-based virtual screening 
to fix incorrect valences and generate 3D conformers. 
Then, the hits were docked onto the defined binding 
site of the protein. The docking results were analyzed 
according to the CHARMM energy scoring function, 
the CDOCKER energy. To identify more desirable hit 
molecules, molecules with high docking scores that 
display interactions with the key active site residues and 
similar geometry as the reference 6TC were selected 
(Tables 5 and 6).

Induced fit docking
An induced fit docking (IFD) study was done using the 
Schrödinger package to confirm the docking results 
using the CDOCKER protocol. The top five hits selected 
from the docking studies and the reference compound 
6TC were chosen for the IFD study. The IFD procedure 
includes three steps: (1) Selected hits were docked into a 
rigid receptor active site pocket. (2) A 0.5 van der Waals 
(VdW) scaling factor was applied to the protein and 
ligand’s non-polar atoms. (3) The energy was minimized 
and maintained close to the model protein structure 
by removing bad steric contacts [66]. For energy 
minimization, the OPLS 2005 force field was applied with 
an implicit solvation model [67].

Molecular dynamics simulation studies
Combining molecular docking studies with Molecular 
dynamic simulations allows the validation of the 
docking results by confirming the structural stability 
and conformational flexibility of the ligand–protein 
complexes [68, 69]. The protein–ligand complexes are set 
to interact in a simulated environment for a specific time. 
Then, trajectories are computed for each protein–ligand 
complex, affording data about the molecular motions 
as a function of time [70]. The protein complexes of 
the five top hit compounds (CDI484583, ENA153723, 
3lp2_LP9, ZINC000003986735, and Compound13509), 
and the crystal structure of Streptococcus pneumoniae 
Undecaprenyl pyrophosphate Synthase (UPPS) (PDB 
ID: 5KH5) [38] in complex with the pyrazole inhibitor 
6TC and the protein 5KH5 without the reference 6TC 
underwent a 100 ns molecular dynamic simulations, thus 
enabling the study of the stability of these complexes.

Force fields are of great importance in biomolecular 
simulation as they calculate the potential energy of the 
particles of the complexes [71]. In this work, the Amber 
ff19SB force field [72] was used to generate topology 
and build a simulation box, while the general AMBER 
force field (GAFF) [73] was used for the ligands. A 
dodecahedral box of 12  Å was constructed around the 
protein–ligand complexes, and the systems were solvated 
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after applying the forcefields. Solvation is essential in 
simulations as it enables studying the internal motion 
of protein systems at varying temperatures. The systems 
were solvated with TIP3P water, and charges were 
neutralized by adding sodium and chloride ions at a 
molar concentration of 0.15 M, leading to a constrained 
orthorhombic periodic cell, hence avoiding the formation 
of artifacts and giving the system a total charge of zero to 
minimize polarization [74–76].

The systems underwent energy minimization to relax 
the water molecules and intramolecular steric clashes; 
this was achieved at a temperature of 298 K under 1 bar 
pressure. The systems were subsequently equilibrated 
for 5000 ps with an integration time step of 2 fs, and the 
intermediate results were saved at 100 ps time intervals. 
A positional restraint of 700 kJ/mol was imposed on all 
bond lengths involving hydrogen atoms. Equilibration 
ensures that the kinetic and potential energy pumped 
through the system is appropriately supplied across all 
degrees of freedom [77].

The last step of operating molecular dynamics 
simulations is running the dynamics (Production) 
through a precise thermodynamic ensemble. In the 
Production phase, the constraints on the protein are 
removed. The system is allowed to run dynamics and 
generate trajectories of the protein and ligand atoms 
according to certain equilibrium conditions, such as the 
NPT ensemble (N: number of particles, P: pressure, and 
T: temperature), also known as the canonical ensemble 
[78] which was used for all the simulations. Temperature 
was maintained at 298 K using the Langevin thermostat 
[79], with a collision frequency of = 1/ps. The system was 
coupled to a Monte Carlo barostat [80] at a reference 
pressure of 1 atm and a relaxation time of 2 ps to achieve 
pressure control. After all the environment parameters 
are stated, the setup is set to observe for 100 ns. The data 

will be gathered for interpretation after the completion 
of the production. The production is displayed at 100 ps 
intervals.

All simulations in this work were done using the 
GPU-accelerated version of OpenMM 7.6 [81] engine 
and the ‘Making it rain’ [82] cloud-based molecular 
simulations notebook environment. Overall, 100  ns 
of MD simulations were attained for each system. The 
trajectories generated during the MD simulations of the 
protein–ligand complexes were analyzed to calculate the 
RMSD, RMSF, and the radius of gyration using scripts 
included in AMBER.

Binding‑free energies of protein–ligand complexes
The binding free energies (ΔG) of the protein–
ligand complexes signify their binding affinity and 
thermodynamic stability, which directly corresponds 
to a compound’s potency [83]. In this study, Poisson–
Boltzman (MM-PBSA) and Generalized Born 
(MM-GBSA) based approaches were used to calculate 
the ΔG of all the conformations formed during the 100 ns 
simulation. In general, the free energy (G) of the ligand, 
or the protein, is computed according to the following 
equation [84]:

where the free energy (G) is the sum of binding energy 
(�Ebind) , electrostatic interactions ( �Eelec ), van der 
Waals interactions ( �EvDW  ), polar energy ( Gpol ) and 
non-polar energy ( Gnp ). In MMPBSA, the polar energy is 
obtained by solving the Poisson–Boltzman equation [85], 
while in the case of MMGBSA, the Generalized-Born 
model is used [86]. T and S are the absolute temperature 
and the entropy, respectively, which were excluded from 

(1)
G = �Ebind +�Eelec +�EvDW + Gpol + Gnp − TS

Fig. 4 Spatial arrangement of the valid pharmacophore model with the distances and angles displayed
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our calculations. The binding free energies ( �Gbind ) were 
calculated using the following equation [85]:

where �Gcomplex , �Greceptor and �Gligand represent the 
free energy of the complex, receptor, and ligand.

Results and discussion
Generation of the 3D QSAR pharmacophore model
A training set of 25 structurally diverse compounds 
with their experimental  IC50 values ranging from 0.04 
to 35 μM [36] was used to generate a 3D QSAR phar-
macophore model (Fig.  4). Utilizing the HYPOGEN 
algorithm, ten Hypotheses were created. The total 
cost, cost differences, RMSD, and correlation coeffi-
cient were the statistical parameters used to evaluate 
the ten generated pharmacophores (Table 1). The null 

(2)�Gbind = �Gcomplex −�Greceptor −�Gligand

cost for the generated Hypotheses is 332.267. The total 
costs for the ten generated Hypotheses ranged from 
140 to 197.22. The total cost value of the best phar-
macophore should be close to the fixed cost and dis-
tant from the null cost. Hypo 1 presented the highest 
null cost difference of 191.39, which means the phar-
macophore model is more than 90% statistically sig-
nificant. Besides the cost analysis, Hypo1 scored the 
highest correlation coefficient value of 0.86 and the 
lowest RMS value of 2.30504, attributing to a superior 
capacity for biological activity prediction. The selected 
pharmacophore model (Hypo 1) (Fig.  4) incorporates 
four chemical features: one hydrogen bond acceptor 
(HBA), two hydrophobic (HYD), and one ring aro-
matic (RA). The distances and angles between those 
features are shown in Table  2 and Fig.  4. The most 
valid pharmacophore, Hypo 1, was chosen for all sub-
sequent screenings.

Validation of the generated pharmacophore model
Three validation methods were applied to validate the 
chosen pharmacophore model Hypo 1: test set analysis, 
cost analysis, and Fischer’s randomization.

Test set analysis
Evaluating the pharmacophore models’ ability to predict 
biological activity was done via a test set of nine diverse 
UPPS inhibitors [36, 42] with varying  IC50s (Fig. 3). The 
test set was mapped to the generated pharmacophore 
using the Ligand Pharmacophore Mapping tool, and esti-
mated activities were calculated for each compound. The 
experimental and predicted activities of the training set 
and test set are stated in Tables  3 and 4. By comparing 
the estimated activity with the reported biological activ-
ity, we evaluated the accuracy of the pharmacophore 
Hypothesis’s ability to predict the test set’s activity. The 

Table 1 Statistical parameters of top 10 generated pharmacophore models

Hypo
No

Maximum fit Total cost Cost Distance RMS Correlation 
coefficient (r)

Features

1 7.6279 140.872 191.39 2.3050 0.8699 HBA HYD HYD RA

2 7.0756 148.201 184.07 2.4248 0.8549 HBA HYD HYD RA

3 7.2516 159.58 172.69 2.6073 0.8299 HBA HYD HYD HYD

4 7.1597 163.686 168.58 2.6688 0.8209 HBA HYD HYD HYD

5 8.0987 167.976 164.29 2.7243 0.8126 HBA HBA HYD HYD HYD

6 9.1462 183.64 148.63 2.9539 0.7750 HBA HBD HYD HYD HYD

7 6.0757 187.008 145.26 2.9559 0.7747 HBA HBD HYD HYD HYD

8 7.1269 190.955 141.31 3.0500 0.7577 HBA HBD HYD HYD

9 6.6619 192.426 139.84 3.0646 0.7550 HBD HYD HYD RA

10 6.9375 197.277 134.99 3.1088 0.746826 HBA HBA HYD HYD HYD

Table 2 The inter-features of the valid pharmacophore model: 
constraint distances and angles

Features Constraint Distance (Å)

HYDROPHOBIC_3.11: HBA_1.21
HYDROPHOBIC_3.11: RING_
AROMATIC_4.21
HYDROPHOBIC_3.11: 
HYDROPHOBIC_2.11
RING_AROMATIC_4.21: 
HYDROPHOBIC_2.11
RING_AROMATIC_4.21: HBA_1.21
HBA_1.21: HYDROPHOBIC_2.11

5.515
11.065
15.144
4.347
6.089
9.314

Constraint Angles (°)

HYDROPHOBIC_3.11, HBA_1.21, 
RING_AROMATIC_4.21
RING_AROMATIC_4.21, HBA_1.21, 
HYDROPHOBIC_2.11
HYDROPHOBIC_2.11, 
RING_AROMATIC_4.21, 
HYDROPHOBIC_3.11

18.43
23.68
6.67
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test set scored a high correlation coefficient of 0.8177, 
indicating good prediction ability.

Cost analysis
The HypoGen algorithm in the Discovery Studio software 
was used to calculate three cost functions for validation. 
The fixed cost assumes a simple Hypothesis model that 

seamlessly fits all the dataset and library molecules; 
hence, it is the lowest cost [51]. The fixed cost value for 
the generated hypothesis is 74.40. The null cost, on the 
other hand, is equivalent to the highest possible error 
cost [52]. The null cost for the generated Hypotheses is 
332.267. The total cost is calculated independently for 
each pharmacophore Hypothesis. It is the sum of weight, 
error, and fixed costs [44]. The total costs for the ten 
generated Hypotheses ranged from 140 to 197. Hypo 1 
was found to have the greatest cost difference of 191.39 
(Table  1), which means the pharmacophore model is 
statistically significant at more than 90%. Hypo1 also 
scored the highest correlation coefficient value of 0.8699 
and the lowest RMS value of 2.3, both attributed to a 
superior capacity for biological activity prediction.

Fischer’s randomization
To obtain 95% confidence, 19 random spreadsheets (ran-
dom Hypotheses) were created [78, 79]. Activity values 
were randomly assigned to the training set molecules 
using random spreadsheets, and Hypotheses were gener-
ated using the same features and parameters developed 
for Hypo1. Upon comparing the HypoGen pharmacoph-
ores and Fischer randomization, none of the randomly 
generated pharmacophores had greater statistical sig-
nificance than Hypo1. Hypo1 displayed better total cost 
values (Fig. 5) and higher correlation values (Fig. 6) com-
pared to the 19 random spreadsheets created by Fischer’s 
randomization. Fischer’s randomization method proves 
that Hypo1 is not a product of chance since it has greater 
significance than all random Hypotheses [55].

Mapping of reference compound 6TC on the validated 
model
To further validate the chosen pharmacophore model, the 
reference ligand (6TC), co-crystalized in the target UPPS 
enzyme (PDB ID: 5KH5), was mapped via the Ligand 
Pharmacophore Mapping protocol in DS on the chosen 
pharmacophore model. The reference ligand successfully 
mapped into the pharmacophore’s four features (Fig. 7B) 
with a high fit value of 7.57. We also analyzed and com-
pared how the reference fits into the model features with 
the interactions between the reference and the binding 
site of 5KH5 (Fig. 7A) [38]. In the reference ligand 6TC, 
the benzothiophene moiety fits in a hydrophobic feature, 
consistent with the reported hydrophobic interactions 
between the benzothiophene moiety and amino acid resi-
dues Phe94 and Met49 [38]. The benzyl-isopropyl moiety 
fits in the ring aromatic feature of our pharmacophore 
model and is reported to have a pi-stacking interaction 
with the amino acid Phe143 [38]. This indicates that the 
docking and the pharmacophore model results consist-
ently validate the computational process. 6TC was used 

Table 3 Estimated and experimental activity of the training set

Name Experimental 
activity

Estimated activity Fit value

T1 0.04 0.0894 6.8886

T2 0.06 0.0482 7.1567

T3 0.07 2.2388 5.4900

T4 0.11 0.0868 6.9013

T5 0.11 0.1986 6.5419

T6 0.12 0.0703 6.9926

T7 0.14 0.1214 6.7557

T8 0.16 0.2673 6.413

T9 0.2 0.1177 6.7691

T10 0.2 0.2184 6.5008

T11 0.3 0.4343 6.2022

T12 0.5 0.4190 6.2178

T13 0.8 0.9777 5.8498

T14 1.1 0.5721 6.0825

T15 1.3 2.8485 5.3854

T16 1.8 1.0760 5.8082

T17 2 7.3483 4.9739

T18 2.1 1.7426 5.5988

T19 2.5 2.6886 5.4105

T20 3.5 2.3478 5.4694

T21 4.2 2.2259 5.4925

T22 8.5 3.3608 5.3136

T23 8.8 1.8356 5.5763

T24 24 12.455 4.7447

T25 35 16.954 4.6108

Table 4 Estimated and experimental activity of the test set

Name Experimental 
activity

Estimated activity Fit value

S1 58 1.52845 5.6558

S2 1.1 0.0262673 7.4206

S3 0.63 0.0250445 7.4413

S4 0.5 0.0446244 7.1905

S5 8.4 7.0014 4.9949

S6 11 1.71703 5.6053

S7 9.5 1.58512 5.6400

S8 9.2 6.60916 5.0199

S9 4.9 2.5735 5.4295
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Fig. 5 The difference in total cost values of hypotheses between a Hypo1 spreadsheet and 19 random spreadsheets

Fig. 6 The difference in correlation values of hypotheses between a Hypo1 spreadsheet and 19 random spreadsheets

Fig. 7 A. The 2D structure of the reference drug with reported interactions highlighted together with the chemical features. B. The mapping 
of the reference drug into HYPO1 with a fit value of 7.57 and an estimated  IC50 of 0.018 µM
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as a standard against which hits of the virtual screening 
were compared.

Virtual screening
The validated pharmacophore model was utilized to 
screen various databases, including FDA-approved mol-
ecules from the ZINC15 library [57], drug-like Diverse 
database, Mini Maybridge, and scPDB. 5887 of the 32387 
screened molecules fitted into the validated pharmaco-
phore model. The selected hits were subjected to Con-
straints like Lipinski’s filter and SMART filter, which were 
applied to ensure the drug-likeability of the selected hits. 
Both filters reduced the number of hits to 4420. Further-
more, Compounds with fit values close to the fit value 
of the reference were selected for docking-based virtual 
screening. The virtual screening process is represented in 
a schematic representation (Fig. 8).

Molecular docking studies
Docking of the reference ligand 6TC
Upon redocking the reference compound 6TC into its 
binding site in the UPPS receptor (PDB ID: 5KH5) using 
the CDOCKER protocol in the DS, it confirmed the 
same orientation geometry mentioned in the literature. 
Furthermore, the generated top five docking poses were 
compared to the original crystallized reference ligand 
6TC by computing the Root Mean Square Deviation 
(RMSD). The RMSD value was equal to 0.92  Å, 
successively validating the docking protocol applied. This 
ensures the validity of using the docking results of 6TC 
as a reference against which all the hits generated by the 
pharmacophore-based virtual screening are compared.

The inhibitor 6TC scored a -CDOCKER energy of 
21.17  kcal/mol and forms two hydrogen bonds, one 
direct hydrogen bond between the pyrazole moiety and 
Arg79 (Fig.  9). The other indirect pi donor hydrogen 
bond is between the pyrazole moiety and His45. The 

Fig. 8 Schematic representation of the virtual screening process used to identify potential hits
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inhibitor forms mostly hydrophobic interactions similar 
to the natural substrate FPP [38]. The isopropoxy ben-
zyl moiety fits into a hydrophobic pocket and forms nine 
hydrophobic interactions with the amino acids (Phe143, 
Ala129, Ile109, Leu126, Leu 145, Pro91, Phe94), while the 
Benzo-thiophene moiety fits into a hydrophobic pocket 
and forms three hydrophobic interactions with the amino 
acids (Pro91, Met49, Ala71) and the pyrazole moiety 
formed three hydrophobic interactions with the amino 
acids (Ala71, Ile78, His45). In addition, the benzyl moi-
ety forms two hydrophobic interactions with the amino 
acids (Ala71, Met27). Lastly, the Benzo-thiophene moiety 
forms one electrostatic interaction with the amino acid 
residue Phe94. All interactions and docking results are 
presented in (Fig. 9) (Tables 5 and 6).

Docking of the virtual screening hits
Following the pharmacophore-based virtual screening 
of various databases and further refining using SMARTS 
and Lipinski’s filters, compounds with fit values close to 
the reference compound 6TC (> 6.5) were selected for 
docking-based virtual screening. The hits were docked 
onto the target UPPS protein (PDB ID: 5KH5) [38] using 
the CDOCKER protocol in DS. Seventy compounds 
were found to have higher docking energies than the 
reference and were filtered according to careful visual 
inspection and comparison to the interactions made by 
the reference. The reference 6TC forms two hydrogen 
bonds, one direct hydrogen bond between the pyrazole 
moiety and Arg79 and the other an indirect pi donor 
hydrogen bond between the pyrazole moiety and His45. 
It also fits into several hydrophobic pockets, forming 
several hydrophobic bonds, as illustrated in Tables 5 and 
6. The interactions of the 70 compounds were compared 

to those of the reference. Five hits were found to have 
very similar interactions and higher docking energies, 
indicating potential UPPS inhibition and antibacterial 
activity (Tables 5 and 6).

Docking Studies of CDI484583 CDI484583, also known 
as ZINC9609856, scored a -CDOCKER energy of 41.87. 
The hit compound formed two hydrogen bonds: the 
O of the dimethoxy benzyl formed one direct hydro-
gen bond with His45, and the H of dimethoxy benzyl 
formed one indirect hydrogen bond with Ile87. The phe-
nyl moiety and the trimethyl pyrazolopyrimidine moi-
ety fit into a hydrophobic pocket and form a total of 13 
hydrophobic interactions with the amino acids (Phe143, 
Leu126, Leu145, Ala71, Pro91, Trp77, Leu118, Pro119). 
The Dimethoxybenzyl moiety forms two hydrophobic 
interactions with the amino acids (Ala71, Leu90). The 
hit compound also makes an electrostatic interaction 
between the phenyl moiety and Met45. When mapped 
to the generated valid pharmacophore, the compound 
scored a high fit value of 7.42 and had similar interac-
tions to the reference compound and higher docking 
energies (Tables 5, 6).

Docking studies of  ENA153723 ENA153723 scored a 
-CDOCKER energy of 41.34. The hit compound formed 
three direct hydrogen bonds: the two Oxygens of aceta-
mide moiety with the His45, Arg79, and Asn30. The 
isobutyl phenyl moiety fits into a hydrophobic pocket 
and forms a total of four hydrophobic interactions with 
the amino acids (Phe143, Pro91, Phe94, Met94), the 
dimethyl phenyl moiety fits into a hydrophobic pocket 
and forms five hydrophobic interactions with the amino 
acids (Pro91, Ala71, Ile87, Leu118), and the triazole 

Fig. 9 The 2D and 3D representation of the docking of the reference ligand (6TC) inside the binding site of UPPS (PDB ID: 5KH5)



Page 14 of 22Qandeel et al. BMC Chemistry           (2024) 18:14 

Table 5 Comparison between 6TC and the five top hits selected from virtual screening with their docking scores, IFD docking scores, 
mapping pharmacophore features, pharmacophore fit values, and estimated activities

Compound Binding interactions
C-Docker 

Energy 
(kcal/mol)

Pharmacophore mapping
IFD 

Docking 
Score 

(kcal\mol)

Fit 
value

Estimated 
activity 

(IC50 µM)

6TC 21.17 -9.90 7.57 0.018

CDI484583 41.87 -8.53 7.42 0.16

ENA153723 41.34 -10.27 7.51 0.13

3lp2_LP9 37.7 -8.83 7.32 0.09

ZINC
(000003986735) 37.19 -7.74 7.41 0.06

Compound135
09 26.47 -11.30 7.2 0.13

The hydrogen bond acceptor (HBA) is colored green, the ring aromatic (RA) is orange, the positive ionizable feature (PI) is red, and the hydrophobic area (HYD) is cyan
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Table 6 Docking results of 6TC and the selected hits from the docking-based virtual screening stating the hydrogen bonds and 
hydrophobic interactions

Compound Hydrogen bonds H‑bond length A° Hydrophobic interactions

6TC (Ref) Arg79—N of pyrazole
His45—phenyl moiety

3.05
3.19

Phe143

Ala129

Ile109

Leu126

Leu 145

Pro91

Phe94















































Isopropoxybenzyl moiety

Pro91

Met49

Ala71











Benzo− thiophene moiety

Ala71

Ile78

His45











Pyrazole moiety

Ala71

Met27

}

Benzyl moiety

CDI484583 His45—O of dimethoxybenzyl
Ile87—H of dimethoxybenzyl

2.68
2.35

Phe143

Leu126

Leu145

Ala71

Pro91

Trp77







































Trimethyl pyrazolopyrimidine moiety

Leu118

Pro119

}

Phenyl moiety

Ala71

Leu90

}

Dimethoxybenzyl moiety

ENA153723 Arg79—O of acetamide
His45—O of acetamide
Asn30—O of acetamide

2.6
2.14
2.37

Phe143

Pro91

Phe94

Met94



















Isobutyl phenyl moiety

Met94

Leu90

}

Triazole moiety

Pro91

Ala71

Ile87

Leu118



















Dimethyl phenyl moiety

3lp2_LP9 Arg79—O of hydroxy
His45—O of carboxylate
His45—O of carbonyl
Asn30—O of carboxylate

2.21
2.05
2.4
2.47

Phe143

Ala129

Leu126

Leu145

Pro91

Phe94







































Diethyl amino phenoxy moiety

Ala71

Il87

}

Naphthyridine moiety
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moiety forms two hydrophobic interactions with the 
amino acid residues Met94 and Leu90. The hit com-
pound also makes three electrostatic interactions, one 
between the sulphur of acetamide moiety and His45 and 
two between the isobutyl phenyl moiety and triazole 
moiety, and the amino acid Met49. When mapped to the 
generated valid pharmacophore, The compound scored 
a high fit value of 7.51 in addition to having very simi-
lar interactions to the reference compound and higher 
docking energies (Tables 5, 6).

Docking studies of  3lp2_LP9 3lp2_LP9 scored a 
-CDOCKER energy of 37. The hit compound formed four 
direct hydrogen bonds between the oxygen of hydroxy, 
oxygen of carboxylate, and oxygen of the carbonyl group 
and the amino acids (His45, Arg79, Asn30). The diethyl 
amino phenoxy moiety fits into a hydrophobic pocket. It 
forms a total of seven hydrophobic interactions with the 
amino acids (Phe143, Ala129, Leu126, Leu145, Pro91, 
Phe94), and the naphthyridine moiety forms two hydro-
phobic interactions with the amino acid residues Ala71 
and Il87. When mapped to generate a valid pharmacoph-
ore, The compound scored a high fit value of 7.32 in addi-
tion to having very similar interactions to the reference 
compound and higher docking energies (Tables 5, 6).

Docking studies of ZINC000003986735 ZINC00000398
6735 scored a -CDOCKER energy of 37.19. The hit com-
pound formed two direct hydrogen bonds between the 
oxygen of the hydroxy group and the amino acid His45. 

The Piperazine moiety and the Methyl pyrimidine moi-
ety fit into a hydrophobic pocket and form a total of nine 
hydrophobic interactions with the amino acids (Phe143, 
Leu126, Pro91, Ile109, Met49, Phe94), and the Thiazole 
moiety forms two hydrophobic interactions with the 
amino acid residues Pro91 and Leu145. In addition, the 
chloride substitution on methyl phenyl moiety forms a 
hydrophobic interaction with Trp77. When mapped to the 
generated a valid pharmacophore, The compound scored 
a high fit value of 7.41 in addition to having very similar 
interactions to the reference compound and higher dock-
ing energies (Tables 5, 6).

Docking studies of  compound13509 Compound 13,509 
scored a -CDOCKER energy of 26.47. The hit compound 
formed three direct hydrogen bonds: two direct hydro-
gen bonds between the oxygen of phenoxy moiety, N of 
triazole and amino acids Arg79 and Trp77, and one indi-
rect hydrogen bond between the phenoxy moiety and the 
amino acid His45. The thiazole and the phenoxy moieties 
form hydrophobic interactions with the amino acid resi-
due Ala71, and the ethylpyrimidine and Piperidine moie-
ties form hydrophobic interactions with the amino acid 
residue Pro91. In addition, the triazole moiety forms two 
hydrophobic interactions with amino acid residues Met27 
and Leu52. The hit compound also makes one electro-
static interaction between the nitrogen of thiazole moiety 
and the amino acid Trp77. When mapped to the gener-
ated valid pharmacophore, the compound scored a high 
fit value of 7.2 and had reasonably similar interactions 

Compound Hydrogen bonds H‑bond length A° Hydrophobic interactions

ZINC000003986735 His45—O of hydroxy 2.6 Phe143

Leu126

Pro91

Ile109



















Methyl pyrimidine moiety

Pro91

Met49

Phe94











Piperazine moiety

Pro91

Leu145

}

Thiazole moiety

Trp77—Chloro substitution on methyl phenyl 

moiety

Compound13509 Arg79—O of phenoxy moiety
His45—Phenoxy moiety
Met49—Triazole moiety
Trp77—N of triazole moiety

2.2
2.8
2.49
2.24

Ala71—Phenoxy moiety

Ala71—Thiazole moiety

Pro91—Ethyl pyrimidine moiety

Pro91—Piperidine moiety

Met27

Leu52

}

Triazole moiety

Table 6 (continued)
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to the reference compound and higher docking energies 
(Tables 5, 6).

Induced fit docking
Molecular docking offers a good start to evaluate the 
stability of the predicted interactions involved in a 
ligand’s binding [67]. IFD is a combined convention of 
molecular docking and dynamics, it helps investigate 
the active site’s dynamic nature during ligand binding 
[66]. In this study, the selected top five hits and the 
reference compound 6TC were docked in the active site 
of the UPPS receptor (PDB ID: 5KH5). The IFD scores 
for compounds 6TC, CDI484583, ENA153723, 3lp2_LP9, 
ZINC000003986735, and Compound13509 are shown in 
Table 5. The reference compound (6TC) had an IFD score 
of − 9.90 kcal/mol, while the top five hits had IFD scores 
ranging from − 11.30 to 7.74  kcal/mol. IFD confirmed 
that the selected top five compounds were well bound 
to the active site of UPPS with good IFD scores and 
displayed molecular interactions similar to the reference 
compound 6TC (Additional file 1: Table S1).

Molecular dynamics simulation studies
To further validate the docking results of the screened 
molecules in the binding site of UPPS(PDB ID: 5KH5) 
[38], we simulated the protein complexes of the five 
top hit compounds (CDI484583, ENA153723, 3lp2_
LP9, ZINC000003986735, and Compound13509) as 
well as, 5KH5 alone and 5KH5 in complex with the 
reference compound using Amber ff19SB force field 
[72] and the general AMBER force field (GAFF) [73] 
through the GPU-accelerated version of OpenMM 7.6 
[81] engine and the ‘Making it rain’ [82] cloud-based 
molecular simulations notebook environment. A 100 ns 
of MD simulation was attained for each system, and A 
1000-frame trajectory was generated by combining a 
production simulation duration with a production save 
results interval of 100  ps. The trajectories generated 
during the MD simulations of the protein–ligand 
complexes were analyzed to calculate the RMSD, radius 
of gyration, and RMSF values using scripts included in 
AMBER (Table 7).

Root Mean Square Deviation (RMSD) assesses the dif-
ference in the backbone of a protein complex from its ini-
tial structural conformation to its final position. RMSD 
represents the extent of structural changes in the protein 
compared to the reference structure during the simula-
tion run, providing a reliable measure of the stability of 
docking complexes [87–89]. The analysis of the RMSD 
for the top hit-protein complexes showed that they were 
largely stable throughout the simulation run with minor 
fluctuations (Fig. 10). The reference 6TC-protein complex 

had an average RMSD of 2.64  Å. The average RMSD 
of the top five hits ranged from 1.7 to 2.15 Å (Table 7), 
thus indicating that the top hits may have a better level 
of stability than the reference 6TC, as lower RMSD val-
ues indicate more stable systems [89, 90]. Moreover, top 
hits one, two, and three (ENA153723, 3lp2_LP9, and 
ZINC000003986735) showed the highest stability during 
the simulation run with an average RMSD value of 1.7, 
1.9, and 1.97  Å, respectively and RMSD fluctuations of 
0.19, 0.14 and 0.1 Å. Overall, the RMSD analysis suggests 
the systems’ stability and confirms the docking results’ 
credibility.

The radius of gyration (RG) is a measure of protein 
compactness and the stability of conformations [91]. 
Upon investigation of RG for the protein alone and the 
protein in complex with the reference 6TC and the top 
five hits, we concluded a tightly packed, stable protein 
folding while complexed with the ligands during the 
100 ns long molecular dynamic run. The average radius 
of gyration for the reference 6TC was equal to 18.04 Å, 
while the five top hits ranged from 17.86 to 18.09  Å 
(Table 7). According to these results, the hits are highly 
compact, as shown in Fig. 11.

Root mean square fluctuation (RMSF) values indi-
cate the extent of motion that amino acid residues in 
a protein experience, with higher values indicating 
greater mobility [85]. In regions with high RMSF val-
ues, the residues can move around more freely, allow-
ing more flexibility. In regions with low RMSF values, 
the residues are more restricted, leading to rigidity [78, 
92]. By investigating the RMSF values, we can assess 
the flexibility of residue side chains and backbone and, 
thus, the flexibility of the overall molecular dynamic 
simulation [93]. As shown in Fig.  12, all the protein–
ligand complexes displayed similar flexibilities. The 
average RMSF value for the reference (6TC) complexed 
with the protein 5KH5 was equal to 1.48  Å, and the 
top five hits average RMSF values ranged from 1.11 to 
1.23 Å (Table 7). Additional RMSF analysis showed that 

Table 7 The average values of Root Mean Square Deviation 
(RMSD), the radius of gyration (ROG), and Root Mean Square 
fluctuations (RMSF) for the protein–ligand complexes during a 
100 ns MD run

Complex RMSD ROG RMSF

5KH5-6TC 2.64 18.04 1.48

5KH5-Top hit 1 1.70 17.98 1.11

5KH5-Top hit 2 1.90 17.86 1.21

5KH5-Top hit 3 1.97 17.99 1.16

5KH5-Top hit 4 1.86 17.84 1.19

5KH5-Top hit 5 2.15 18.09 1.23
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residues 136–156 of 5KH5 displayed high fluctuations 
in all systems. Residues Arg79, His45, Asn30, Ile87, 
Met49, and Try77 of 5KH5, which all mainly form 
ligand–protein hydrogen bonds, displayed low fluctua-
tions in all systems.

The binding site residue interactions of the protein–
ligand complexes were observed for the best energy con-
formations obtained from the MD run (Additional file 1: 
Table S2). Most of the protein residue interactions with 
the inhibitors are defined as hydrophobic. The reference 
ligand (6TC) and top hit 1 (CDI484583) formed hydro-
phobic and van der Waals interactions and no hydrogen 
bonds. Top hit two (ENA153723) formed two conven-
tional hydrogen bond interactions with Asn14 and Hie29, 
while Top hit three (3lp2_LP9) formed one conventional 
hydrogen bond interaction with the amino acid residue 
Glu62. Top hits four and five (ZINC000003986735 and 
Compound13509) formed one conventional hydrogen 
bond interaction with amino acid residue Asn14.

Binding free energies of protein–ligand complexes
The binding free energies for the interactions of the top 
five hits and the reference (6TC) with the UPPS recep-
tor 5KH5 (PDB ID: 5KH5) [38] were computed using 
the Poisson–Boltzman (MM-PBSA) and Generalized 
Born (MM-GBSA) methods [84]. The results are shown 
in Table  8. The contribution of van der Waals  (EvdW), 
electrostatic  (Eelec), polar solvation  (Esurf), non-polar 
solvation  (Enpolar), Generalized Born solvent  (EEGB), and 
Poisson Boltzmann solvent  (EEPB) energies to the total 
binding free energies are also tabulated. Lower binding 
affinity implies strong interactions and better stabili-
ties, revealing the compound’s potency [94]. According 
to MM-GBSA calculations, ΔG for the reference ligand 
6TC was (− 47.125  kcal/mol). The binding free ener-
gies of the top five hits complexed with the UPPS pro-
tein 5KH5 ranged from − 52.240 to − 42.656 kcal/mol, 
of which the top hit four (− 52.240 ± 2.928  kcal/mol) 
had the lowest binding free energy. Top hits two, four 
and five displayed lower binding free energies than the 

Fig. 10 Root Mean Square Deviations (RMSD) of protein 5KH5 alone, the docked reference ( 6TC) and the selected top five hits

Fig. 11 Radius of Gyration of protein 5KH5 alone, the docked reference 6TC and the selected top five hits
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reference 6TC, indicating better stabilities. As per MM-
PBSA calculations, ΔG for the reference ligand 6TC 
was (− 0.973 kcal/mol). The binding free energies of the 
top five hits complexed with the UPPS protein 5KH5 
ranged from − 3.081 ± 1.789 to 2.020 kcal/mol, of which 
the top hit three (− 1.702 ± 1.379) and the top hit five 
(− 3.081 ± 1.789 kcal/mol) had lower binding free ener-
gies than the reference 6TC indicating better stabilities.

Conclusion
This study generated a valid predictive pharmacophore 
model via the 3D QSAR pharmacophore generation 
protocol by utilizing a set of 34 UPPS inhibitors with 

known activity. The pharmacophore model (Hypo1) 
was validated by having the highest cost difference 
(191.39), the highest correlation coefficient (0.86), 
and the lowest total cost value (140.87). The model 
consists of four features: one hydrogen bond acceptor, 
two hydrophobics, and one ring aromatic. The Hypo1 
model was cross-validated by test set predictions, 
cost analysis, and Fischer’s randomization, all of 
which confirmed the model’s high predictive power. 
The model was used to screen 32387 molecules from 
various databases. Five thousand eight hundred eighty-
seven molecules fit into the validated pharmacophore 
model and were filtered by Lipinski’s and SMART 

Fig. 12 Root mean square deviation (RMSF) of protein 5KH5 alone, the docked reference 6TC and the selected top five hits

Table 8 The average binding free energy (kcal/mol) of protein–ligand complexes during the 100 ns MD run using MM-GBSA and 
MM-PBSA methods

Complex ΔEvdW ΔEelec ΔEEGB ΔEESURF ΔGgas ΔGsolv ΔGbind

MM‑GBSA
5KH5-6TC − 67.364 ± 0.000 − 5.128 ± 0.000 33.456 ± 0.000 − 8.0885 ± 0.000 − 72.493 ± 0.000 25.367 ± 0.000 − 47.125 ± 0.000

5KH5-Top hit 1 − 58.883 ± 0.000 − 3.782 ± 0.000 26.950 ± 0.000 − 6.940 ± 0.000 − 62.666 ± 0.000 20.010 ± 0.000 − 42.656 ± 0.000

5KH5-Top hit 2 − 65.679 ± 0.937 − 17.530 ± 3.473 41.416 ± 2.894 − 7.724 ± 0.081 − 83.210 ± 3.420 33.692 ± 2.888 − 49.518 ± 1.013

5KH5-Top hit 3 − 57.009 ± 1.301 − 33.640 ± 2.566 53.189 ± 1.918 − 7.373 ± 0.098 − 90.649 ± 2.521 45.815 ± 1.925 − 44.833 ± 0.932

5KH5-Top hit 4 − 63.784 ± 2.687 − 19.368 ± 2.557 38.279 ± 2.054 − 7.368 ± 0.206 − 83.152 ± 4.578 30.911 ± 1.898 − 52.240 ± 2.928

5KH5-Top hit 5 − 61.684 ± 0.933 − 2.815 ± 0.382 23.045 ± 0.574 − 6.949 ± 0.567 − 64.500 ± 1.064 16.095 ± 0.573 − 48.404 ± 1.195

Complex ΔEvdW ΔEelec ΔEEPB ΔEENPOLAR ΔGgas ΔGsolv ΔGbind

MM‑PBSA
5KH5-6TC − 67.364 ± 0.000 − 5.128 ± 0.000 35.881 ± 0.000 − 46.028 ± 0.000 − 72.493 ± 0.000 71.519 ± 0.000 − 0.973 ± 0.000

5KH5-Top hit 1 − 58.883 ± 0.000 − 3.782 ± 0.000 32.393 ± 0.000 − 40.349 ± 0.000 − 62.666 ± 0.000 64.686 ± 0.000 2.020 ± 0.000

5KH5-Top hit 2 − 65.679 ± 0.937 − 17.530 ± 3.473 50.633 ± 2.421 − 43.790 ± 0.260 − 83.210 ± 3.420 83.267 ± 2.535 0.057 ± 2.058

5KH5-Top hit 3 − 57.009 ± 1.301 − 33.640 ± 2.566 61.030 ± 2.665 − 39.322 ± 0.477 − 90.649 ± 2.521 88.946 ± 2.806 − 1.702 ± 1.379

5KH5-Top hit 4 − 63.784 ± 2.687 − 19.368 ± 2.557 53.131 ± 3.455 − 41.448 ± 0.972 − 83.152 ± 4.578 85.068 ± 4.289 1.915 ± 1.265

5KH5-Top hit 5 − 61.684 ± 0.933 − 2.815 ± 0.382 30.604 ± 1.113 − 39.894 ± 0.262 − 64.500 ± 1.064 61.418 ± 1.288 − 3.081 ± 1.789
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filters to ensure the drug-likeability of the selected hits. 
Furthermore, compounds with fit values close to the fit 
value of the reference (> 6.5) were chosen for docking-
based virtual screening. Compounds were docked 
using the CDOCKER protocol into the target UPPS 
binding site, and 70 hits had higher docking affinities 
than the reference 6TC. After extensive docking 
analysis and visual inspection, five top hits were 
selected based on docking affinities, fit values, and key 
residue interactions. The top five hits are CDI484583, 
ENA153723, 3LP2_LP9, ZINC000003986735, and 
Compound13509. IFD confirmed that the selected top 
five compounds were well bound to the active site of 
UPPS with good IFD scores and displayed molecular 
interactions similar to the reference compound 6TC. 
The top five hits were subjected to MD simulations, 
which validated the stability of the binding mode, 
yielding five promising putative UPPS inhibitors. 
In vitro and in vivo biological testing would be valuable 
for further evaluating these inhibitors (Additional 
file 2).
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